Izrēķināt
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3\left(\left(x-5\right)\left(x-2\right)\right)^{3}}
Paplašināt
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3\left(\left(x-5\right)\left(x-2\right)\right)^{3}}
Graph
Koplietot
Kopēts starpliktuvē
\frac{-42\left(x-5\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}+\frac{78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. \left(3x-6\right)^{3} un \left(3x-15\right)^{3} mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 27\left(x-5\right)^{3}\left(x-2\right)^{3}. Reiziniet \frac{-42}{\left(3x-6\right)^{3}} reiz \frac{\left(x-5\right)^{3}}{\left(x-5\right)^{3}}. Reiziniet \frac{78}{\left(3x-15\right)^{3}} reiz \frac{\left(x-2\right)^{3}}{\left(x-2\right)^{3}}.
\frac{-42\left(x-5\right)^{3}+78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Tā kā \frac{-42\left(x-5\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}} un \frac{78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{-42x^{3}+630x^{2}-3150x+5250+78x^{3}-468x^{2}+936x-624}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Veiciet reizināšanas darbības izteiksmē -42\left(x-5\right)^{3}+78\left(x-2\right)^{3}.
\frac{36x^{3}+162x^{2}-2214x+4626}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Apvienojiet līdzīgos locekļus izteiksmē -42x^{3}+630x^{2}-3150x+5250+78x^{3}-468x^{2}+936x-624.
\frac{18\left(2x^{3}+9x^{2}-123x+257\right)}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{36x^{3}+162x^{2}-2214x+4626}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}.
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3\left(x-5\right)^{3}\left(x-2\right)^{3}}
Saīsiniet 9 gan skaitītājā, gan saucējā.
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3x^{6}-63x^{5}+531x^{4}-2289x^{3}+5310x^{2}-6300x+3000}
Paplašiniet 3\left(x-5\right)^{3}\left(x-2\right)^{3}.
\frac{4x^{3}+18x^{2}-246x+514}{3x^{6}-63x^{5}+531x^{4}-2289x^{3}+5310x^{2}-6300x+3000}
Izmantojiet distributīvo īpašību, lai reizinātu 2 ar 2x^{3}+9x^{2}-123x+257.
\frac{-42\left(x-5\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}+\frac{78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. \left(3x-6\right)^{3} un \left(3x-15\right)^{3} mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir 27\left(x-5\right)^{3}\left(x-2\right)^{3}. Reiziniet \frac{-42}{\left(3x-6\right)^{3}} reiz \frac{\left(x-5\right)^{3}}{\left(x-5\right)^{3}}. Reiziniet \frac{78}{\left(3x-15\right)^{3}} reiz \frac{\left(x-2\right)^{3}}{\left(x-2\right)^{3}}.
\frac{-42\left(x-5\right)^{3}+78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Tā kā \frac{-42\left(x-5\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}} un \frac{78\left(x-2\right)^{3}}{27\left(x-5\right)^{3}\left(x-2\right)^{3}} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{-42x^{3}+630x^{2}-3150x+5250+78x^{3}-468x^{2}+936x-624}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Veiciet reizināšanas darbības izteiksmē -42\left(x-5\right)^{3}+78\left(x-2\right)^{3}.
\frac{36x^{3}+162x^{2}-2214x+4626}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Apvienojiet līdzīgos locekļus izteiksmē -42x^{3}+630x^{2}-3150x+5250+78x^{3}-468x^{2}+936x-624.
\frac{18\left(2x^{3}+9x^{2}-123x+257\right)}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{36x^{3}+162x^{2}-2214x+4626}{27\left(x-5\right)^{3}\left(x-2\right)^{3}}.
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3\left(x-5\right)^{3}\left(x-2\right)^{3}}
Saīsiniet 9 gan skaitītājā, gan saucējā.
\frac{2\left(2x^{3}+9x^{2}-123x+257\right)}{3x^{6}-63x^{5}+531x^{4}-2289x^{3}+5310x^{2}-6300x+3000}
Paplašiniet 3\left(x-5\right)^{3}\left(x-2\right)^{3}.
\frac{4x^{3}+18x^{2}-246x+514}{3x^{6}-63x^{5}+531x^{4}-2289x^{3}+5310x^{2}-6300x+3000}
Izmantojiet distributīvo īpašību, lai reizinātu 2 ar 2x^{3}+9x^{2}-123x+257.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}