Atrast y
y=1
y=0
Graph
Koplietot
Kopēts starpliktuvē
y^{2}-y=0
Mainīgais y nevar būt vienāds ar -3, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar y+3.
y\left(y-1\right)=0
Iznesiet reizinātāju y pirms iekavām.
y=0 y=1
Lai atrastu vienādojumu risinājumus, atrisiniet y=0 un y-1=0.
y^{2}-y=0
Mainīgais y nevar būt vienāds ar -3, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar y+3.
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar -1 un c ar 0.
y=\frac{-\left(-1\right)±1}{2}
Izvelciet kvadrātsakni no 1.
y=\frac{1±1}{2}
Skaitļa -1 pretstats ir 1.
y=\frac{2}{2}
Tagad atrisiniet vienādojumu y=\frac{1±1}{2}, ja ± ir pluss. Pieskaitiet 1 pie 1.
y=1
Daliet 2 ar 2.
y=\frac{0}{2}
Tagad atrisiniet vienādojumu y=\frac{1±1}{2}, ja ± ir mīnuss. Atņemiet 1 no 1.
y=0
Daliet 0 ar 2.
y=1 y=0
Vienādojums tagad ir atrisināts.
y^{2}-y=0
Mainīgais y nevar būt vienāds ar -3, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar y+3.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Daliet locekļa x koeficientu -1 ar 2, lai iegūtu -\frac{1}{2}. Pēc tam abām vienādojuma pusēm pieskaitiet -\frac{1}{2} kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
y^{2}-y+\frac{1}{4}=\frac{1}{4}
Kāpiniet kvadrātā -\frac{1}{2}, kāpinot kvadrātā gan daļas skaitītāju, gan saucēju.
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
Sadaliet reizinātājos y^{2}-y+\frac{1}{4}. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Izvelciet abu vienādojuma pušu kvadrātsakni.
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
Vienkāršojiet.
y=1 y=0
Pieskaitiet \frac{1}{2} abās vienādojuma pusēs.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}