Izrēķināt
x
Diferencēt pēc x
1
Graph
Koplietot
Kopēts starpliktuvē
\frac{x^{4}x^{3}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 1, lai iegūtu 4.
\frac{x^{7}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 4 un 3, lai iegūtu 7.
\frac{x^{7}}{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Reiziniet x un x, lai iegūtu x^{2}.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}{x^{2}xx^{3}}
Reiziniet x un x, lai iegūtu x^{2}.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{2}xx^{3}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{3}x^{3}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 3, lai iegūtu 6.
\frac{x^{4}}{\frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
\frac{x^{4}}{\frac{1}{4}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Reiziniet \frac{1}{2} un \frac{1}{2}, lai iegūtu \frac{1}{4}.
x^{4}\times 4\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Daliet x^{4} ar \frac{1}{4}, reizinot x^{4} ar apgriezto daļskaitli \frac{1}{4} .
x^{4}\times 4\times \frac{\frac{1}{2}\times \frac{1}{2}}{x^{3}}
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
x^{4}\times 4\times \frac{\frac{1}{4}}{x^{3}}
Reiziniet \frac{1}{2} un \frac{1}{2}, lai iegūtu \frac{1}{4}.
x^{4}\times 4\times \frac{1}{4x^{3}}
Izsakiet \frac{\frac{1}{4}}{x^{3}} kā vienu daļskaitli.
\frac{x^{4}}{4x^{3}}\times 4
Izsakiet x^{4}\times \frac{1}{4x^{3}} kā vienu daļskaitli.
\frac{x}{4}\times 4
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
x
Saīsiniet 4 un 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}x^{3}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 1, lai iegūtu 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 4 un 3, lai iegūtu 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Reiziniet x un x, lai iegūtu x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}{x^{2}xx^{3}})
Reiziniet x un x, lai iegūtu x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{2}xx^{3}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{3}x^{3}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 2 un 1, lai iegūtu 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 3 un 3, lai iegūtu 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{\frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{\frac{1}{4}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Reiziniet \frac{1}{2} un \frac{1}{2}, lai iegūtu \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Daliet x^{4} ar \frac{1}{4}, reizinot x^{4} ar apgriezto daļskaitli \frac{1}{4} .
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{\frac{1}{2}\times \frac{1}{2}}{x^{3}})
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{\frac{1}{4}}{x^{3}})
Reiziniet \frac{1}{2} un \frac{1}{2}, lai iegūtu \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{1}{4x^{3}})
Izsakiet \frac{\frac{1}{4}}{x^{3}} kā vienu daļskaitli.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{4x^{3}}\times 4)
Izsakiet x^{4}\times \frac{1}{4x^{3}} kā vienu daļskaitli.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{4}\times 4)
Saīsiniet x^{3} gan skaitītājā, gan saucējā.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Saīsiniet 4 un 4.
x^{1-1}
ax^{n} atvasinājums ir nax^{n-1}.
x^{0}
Atņemiet 1 no 1.
1
Jebkuram loceklim t, izņemot 0, t^{0}=1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}