Izrēķināt
-\frac{704}{1875}\approx -0,375466667
Sadalīt reizinātājos
-\frac{704}{1875} = -0,37546666666666667
Koplietot
Kopēts starpliktuvē
\frac{\frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Daliet \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} ar \frac{5}{6}, reizinot \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} ar apgriezto daļskaitli \frac{5}{6} .
\frac{\frac{\left(-\frac{1}{6}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Atņemiet \frac{2}{3} no \frac{1}{2}, lai iegūtu -\frac{1}{6}.
\frac{\frac{\frac{1}{36}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Aprēķiniet -\frac{1}{6} pakāpē 2 un iegūstiet \frac{1}{36}.
\frac{\frac{\frac{1}{6}}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Reiziniet \frac{1}{36} un 6, lai iegūtu \frac{1}{6}.
\frac{\frac{\frac{1}{6}}{\frac{25}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Reiziniet \frac{5}{6} un 5, lai iegūtu \frac{25}{6}.
\frac{\frac{1}{6}\times \frac{6}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Daliet \frac{1}{6} ar \frac{25}{6}, reizinot \frac{1}{6} ar apgriezto daļskaitli \frac{25}{6} .
\frac{\frac{1}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Reiziniet \frac{1}{6} un \frac{6}{25}, lai iegūtu \frac{1}{25}.
\frac{\frac{1}{25}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Pārrakstiet dalījuma kvadrātsakni \frac{1}{9} kā kvadrātveida saknes \frac{\sqrt{1}}{\sqrt{9}}. Izrēķiniet gan skaitītāja, gan saucēja kvadrātsakni.
\frac{-\frac{22}{75}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Atņemiet \frac{1}{3} no \frac{1}{25}, lai iegūtu -\frac{22}{75}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Aprēķināt \sqrt[3]{\frac{1}{8}} un iegūt \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Atņemiet \frac{1}{2} no 1, lai iegūtu \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Aprēķiniet \frac{1}{2} pakāpē 2 un iegūstiet \frac{1}{4}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{9}{32}}
Reiziniet \frac{1}{4} un \frac{9}{8}, lai iegūtu \frac{9}{32}.
\frac{-\frac{22}{75}}{\frac{25}{32}}
Saskaitiet \frac{1}{2} un \frac{9}{32}, lai iegūtu \frac{25}{32}.
-\frac{22}{75}\times \frac{32}{25}
Daliet -\frac{22}{75} ar \frac{25}{32}, reizinot -\frac{22}{75} ar apgriezto daļskaitli \frac{25}{32} .
-\frac{704}{1875}
Reiziniet -\frac{22}{75} un \frac{32}{25}, lai iegūtu -\frac{704}{1875}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}