Izrēķināt
\frac{139}{24}\approx 5,791666667
Sadalīt reizinātājos
\frac{139}{2 ^ {3} \cdot 3} = 5\frac{19}{24} = 5,791666666666667
Koplietot
Kopēts starpliktuvē
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Aprēķināt \sqrt[5]{\frac{1}{32}} un iegūt \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Aprēķiniet \frac{2}{3} pakāpē -1 un iegūstiet \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Daliet \frac{1}{2} ar \frac{3}{2}, reizinot \frac{1}{2} ar apgriezto daļskaitli \frac{3}{2} .
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reiziniet \frac{1}{2} un \frac{2}{3}, lai iegūtu \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Atņemiet \frac{1}{3} no 1, lai iegūtu \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reiziniet \frac{2}{3} un \frac{9}{4}, lai iegūtu \frac{3}{2}.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Saskaitiet \frac{3}{2} un \frac{1}{2}, lai iegūtu 2.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Izsakiet \frac{\frac{1}{3}}{2} kā vienu daļskaitli.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reiziniet 3 un 2, lai iegūtu 6.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Atņemiet \frac{16}{25} no 1, lai iegūtu \frac{9}{25}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Pārrakstiet dalījuma kvadrātsakni \frac{9}{25} kā kvadrātveida saknes \frac{\sqrt{9}}{\sqrt{25}}. Izrēķiniet gan skaitītāja, gan saucēja kvadrātsakni.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Aprēķiniet \frac{15}{2} pakāpē 1 un iegūstiet \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Daliet \frac{4}{5} ar \frac{15}{2}, reizinot \frac{4}{5} ar apgriezto daļskaitli \frac{15}{2} .
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{8}{75}}
Reiziniet \frac{4}{5} un \frac{2}{15}, lai iegūtu \frac{8}{75}.
\frac{1}{6}+\frac{3}{5}\times \frac{75}{8}
Daliet \frac{3}{5} ar \frac{8}{75}, reizinot \frac{3}{5} ar apgriezto daļskaitli \frac{8}{75} .
\frac{1}{6}+\frac{45}{8}
Reiziniet \frac{3}{5} un \frac{75}{8}, lai iegūtu \frac{45}{8}.
\frac{139}{24}
Saskaitiet \frac{1}{6} un \frac{45}{8}, lai iegūtu \frac{139}{24}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}