Izrēķināt
\frac{2\left(x-4\right)}{x^{2}}
Paplašināt
\frac{2\left(x-4\right)}{x^{2}}
Graph
Koplietot
Kopēts starpliktuvē
\frac{\frac{1}{x}\left(x-4\right)\left(x+4\right)}{5x}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{x-16x^{-1}}{5x}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Lai dalītu vienas bāzes pakāpes, atņemiet skaitītāja kāpinātāju no saucēja kāpinātāja.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\times \left(\frac{1}{x}\right)^{2}\left(x-1\right)}{\left(\frac{1}{x}\right)^{2}\left(x+4\right)}\right)
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\left(x-1\right)}{x+4}\right)
Saīsiniet \left(\frac{1}{x}\right)^{2} gan skaitītājā, gan saucējā.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(\frac{2\left(x+4\right)}{x+4}-\frac{2\left(x-1\right)}{x+4}\right)
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet 2 reiz \frac{x+4}{x+4}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2\left(x+4\right)-2\left(x-1\right)}{x+4}
Tā kā \frac{2\left(x+4\right)}{x+4} un \frac{2\left(x-1\right)}{x+4} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2x+8-2x+2}{x+4}
Veiciet reizināšanas darbības izteiksmē 2\left(x+4\right)-2\left(x-1\right).
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{10}{x+4}
Apvienojiet līdzīgos locekļus izteiksmē 2x+8-2x+2.
\frac{\left(x-4\right)\left(x+4\right)\times 10}{5x^{2}\left(x+4\right)}
Reiziniet \frac{\left(x-4\right)\left(x+4\right)}{5x^{2}} ar \frac{10}{x+4}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{2\left(x-4\right)}{x^{2}}
Saīsiniet 5\left(x+4\right) gan skaitītājā, gan saucējā.
\frac{2x-8}{x^{2}}
Izmantojiet distributīvo īpašību, lai reizinātu 2 ar x-4.
\frac{\frac{1}{x}\left(x-4\right)\left(x+4\right)}{5x}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{x-16x^{-1}}{5x}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Lai dalītu vienas bāzes pakāpes, atņemiet skaitītāja kāpinātāju no saucēja kāpinātāja.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\times \left(\frac{1}{x}\right)^{2}\left(x-1\right)}{\left(\frac{1}{x}\right)^{2}\left(x+4\right)}\right)
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\left(x-1\right)}{x+4}\right)
Saīsiniet \left(\frac{1}{x}\right)^{2} gan skaitītājā, gan saucējā.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(\frac{2\left(x+4\right)}{x+4}-\frac{2\left(x-1\right)}{x+4}\right)
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet 2 reiz \frac{x+4}{x+4}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2\left(x+4\right)-2\left(x-1\right)}{x+4}
Tā kā \frac{2\left(x+4\right)}{x+4} un \frac{2\left(x-1\right)}{x+4} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2x+8-2x+2}{x+4}
Veiciet reizināšanas darbības izteiksmē 2\left(x+4\right)-2\left(x-1\right).
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{10}{x+4}
Apvienojiet līdzīgos locekļus izteiksmē 2x+8-2x+2.
\frac{\left(x-4\right)\left(x+4\right)\times 10}{5x^{2}\left(x+4\right)}
Reiziniet \frac{\left(x-4\right)\left(x+4\right)}{5x^{2}} ar \frac{10}{x+4}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{2\left(x-4\right)}{x^{2}}
Saīsiniet 5\left(x+4\right) gan skaitītājā, gan saucējā.
\frac{2x-8}{x^{2}}
Izmantojiet distributīvo īpašību, lai reizinātu 2 ar x-4.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}