Atrast m (complex solution)
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 2\text{ and }x\neq 5\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=-2\end{matrix}\right,
Atrast n (complex solution)
n=-\left(mx+x+2\right)
x\neq 2\text{ and }x\neq 5
Atrast m
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 5\text{ and }x\neq 2\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=-2\end{matrix}\right,
Atrast n
n=-\left(mx+x+2\right)
x\neq 5\text{ and }x\neq 2
Graph
Koplietot
Kopēts starpliktuvē
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Reiziniet abas vienādojuma puses ar \left(x-5\right)\left(x-2\right), kas ir mazākais x^{2}-7x+10,x-5 skaitlis, kas dalās bez atlikuma.
x^{2}+mx+n=x^{2}-x-2
Izmantojiet distributīvo īpašību, lai reizinātu x-2 ar x+1 un apvienotu līdzīgos locekļus.
mx+n=x^{2}-x-2-x^{2}
Atņemiet x^{2} no abām pusēm.
mx+n=-x-2
Savelciet x^{2} un -x^{2}, lai iegūtu 0.
mx=-x-2-n
Atņemiet n no abām pusēm.
xm=-x-n-2
Vienādojums ir standarta formā.
\frac{xm}{x}=\frac{-x-n-2}{x}
Daliet abas puses ar x.
m=\frac{-x-n-2}{x}
Dalīšana ar x atsauc reizināšanu ar x.
m=-\frac{x+n+2}{x}
Daliet -x-2-n ar x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Reiziniet abas vienādojuma puses ar \left(x-5\right)\left(x-2\right), kas ir mazākais x^{2}-7x+10,x-5 skaitlis, kas dalās bez atlikuma.
x^{2}+mx+n=x^{2}-x-2
Izmantojiet distributīvo īpašību, lai reizinātu x-2 ar x+1 un apvienotu līdzīgos locekļus.
mx+n=x^{2}-x-2-x^{2}
Atņemiet x^{2} no abām pusēm.
mx+n=-x-2
Savelciet x^{2} un -x^{2}, lai iegūtu 0.
n=-x-2-mx
Atņemiet mx no abām pusēm.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Reiziniet abas vienādojuma puses ar \left(x-5\right)\left(x-2\right), kas ir mazākais x^{2}-7x+10,x-5 skaitlis, kas dalās bez atlikuma.
x^{2}+mx+n=x^{2}-x-2
Izmantojiet distributīvo īpašību, lai reizinātu x-2 ar x+1 un apvienotu līdzīgos locekļus.
mx+n=x^{2}-x-2-x^{2}
Atņemiet x^{2} no abām pusēm.
mx+n=-x-2
Savelciet x^{2} un -x^{2}, lai iegūtu 0.
mx=-x-2-n
Atņemiet n no abām pusēm.
xm=-x-n-2
Vienādojums ir standarta formā.
\frac{xm}{x}=\frac{-x-n-2}{x}
Daliet abas puses ar x.
m=\frac{-x-n-2}{x}
Dalīšana ar x atsauc reizināšanu ar x.
m=-\frac{x+n+2}{x}
Daliet -x-2-n ar x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Reiziniet abas vienādojuma puses ar \left(x-5\right)\left(x-2\right), kas ir mazākais x^{2}-7x+10,x-5 skaitlis, kas dalās bez atlikuma.
x^{2}+mx+n=x^{2}-x-2
Izmantojiet distributīvo īpašību, lai reizinātu x-2 ar x+1 un apvienotu līdzīgos locekļus.
mx+n=x^{2}-x-2-x^{2}
Atņemiet x^{2} no abām pusēm.
mx+n=-x-2
Savelciet x^{2} un -x^{2}, lai iegūtu 0.
n=-x-2-mx
Atņemiet mx no abām pusēm.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}