Izrēķināt
\frac{2q\left(1-r\right)}{3\left(r^{2}-q^{2}\right)}
Paplašināt
-\frac{2\left(qr-q\right)}{3\left(r^{2}-q^{2}\right)}
Koplietot
Kopēts starpliktuvē
\frac{q\left(-r+1\right)}{3q\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{q-qr}{6q-15pq}.
\frac{-r+1}{3\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Saīsiniet q gan skaitītājā, gan saucējā.
\frac{\left(-r+1\right)\left(4q-10pq\right)}{3\left(-5p+2\right)\left(r^{2}-q^{2}\right)}
Reiziniet \frac{-r+1}{3\left(-5p+2\right)} ar \frac{4q-10pq}{r^{2}-q^{2}}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{2q\left(-5p+2\right)\left(-r+1\right)}{3\left(-5p+2\right)\left(q+r\right)\left(-q+r\right)}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos.
\frac{2q\left(-r+1\right)}{3\left(q+r\right)\left(-q+r\right)}
Saīsiniet -5p+2 gan skaitītājā, gan saucējā.
\frac{-2qr+2q}{-3q^{2}+3r^{2}}
Izvērsiet izteiksmi.
\frac{q\left(-r+1\right)}{3q\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{q-qr}{6q-15pq}.
\frac{-r+1}{3\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Saīsiniet q gan skaitītājā, gan saucējā.
\frac{\left(-r+1\right)\left(4q-10pq\right)}{3\left(-5p+2\right)\left(r^{2}-q^{2}\right)}
Reiziniet \frac{-r+1}{3\left(-5p+2\right)} ar \frac{4q-10pq}{r^{2}-q^{2}}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{2q\left(-5p+2\right)\left(-r+1\right)}{3\left(-5p+2\right)\left(q+r\right)\left(-q+r\right)}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos.
\frac{2q\left(-r+1\right)}{3\left(q+r\right)\left(-q+r\right)}
Saīsiniet -5p+2 gan skaitītājā, gan saucējā.
\frac{-2qr+2q}{-3q^{2}+3r^{2}}
Izvērsiet izteiksmi.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}