Atrast c
c=\frac{b^{2}-3b-27}{b+6}
b\neq -6
Atrast b (complex solution)
b=\frac{\sqrt{c^{2}+30c+117}+c+3}{2}
b=\frac{-\sqrt{c^{2}+30c+117}+c+3}{2}
Atrast b
b=\frac{\sqrt{c^{2}+30c+117}+c+3}{2}
b=\frac{-\sqrt{c^{2}+30c+117}+c+3}{2}\text{, }c\geq 6\sqrt{3}-15\text{ or }c\leq -6\sqrt{3}-15
Koplietot
Kopēts starpliktuvē
b^{2}+b-2-\left(c+4\right)\left(b+6\right)=1
Reiziniet vienādojuma abas puses ar b+6.
b^{2}+b-2+\left(-c-4\right)\left(b+6\right)=1
Izmantojiet distributīvo īpašību, lai reizinātu -1 ar c+4.
b^{2}+b-2-cb-6c-4b-24=1
Izmantojiet distributīvo īpašību, lai reizinātu -c-4 ar b+6.
b^{2}-3b-2-cb-6c-24=1
Savelciet b un -4b, lai iegūtu -3b.
b^{2}-3b-26-cb-6c=1
Atņemiet 24 no -2, lai iegūtu -26.
-3b-26-cb-6c=1-b^{2}
Atņemiet b^{2} no abām pusēm.
-26-cb-6c=1-b^{2}+3b
Pievienot 3b abās pusēs.
-cb-6c=1-b^{2}+3b+26
Pievienot 26 abās pusēs.
-cb-6c=27-b^{2}+3b
Saskaitiet 1 un 26, lai iegūtu 27.
\left(-b-6\right)c=27-b^{2}+3b
Savelciet visus locekļus, kuros ir c.
\left(-b-6\right)c=27+3b-b^{2}
Vienādojums ir standarta formā.
\frac{\left(-b-6\right)c}{-b-6}=\frac{27+3b-b^{2}}{-b-6}
Daliet abas puses ar -b-6.
c=\frac{27+3b-b^{2}}{-b-6}
Dalīšana ar -b-6 atsauc reizināšanu ar -b-6.
c=-\frac{27+3b-b^{2}}{b+6}
Daliet 27-b^{2}+3b ar -b-6.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}