Pāriet uz galveno saturu
Atrast a (complex solution)
Tick mark Image
Atrast a
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Mainīgais a nevar būt vienāds ar 0, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Atņemiet ax^{2}\left(\cos(x)\right)^{2} no abām pusēm.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Pievienot y abās pusēs. Jebkuram skaitlim pieskaitot nulli, iegūst to pašu skaitli.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Savelciet visus locekļus, kuros ir a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Vienādojums ir standarta formā.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Daliet abas puses ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Dalīšana ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} atsauc reizināšanu ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Daliet y ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Mainīgais a nevar būt vienāds ar 0.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Mainīgais a nevar būt vienāds ar 0, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Atņemiet ax^{2}\left(\cos(x)\right)^{2} no abām pusēm.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Pievienot y abās pusēs. Jebkuram skaitlim pieskaitot nulli, iegūst to pašu skaitli.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Savelciet visus locekļus, kuros ir a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Vienādojums ir standarta formā.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Daliet abas puses ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Dalīšana ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} atsauc reizināšanu ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Daliet y ar 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Mainīgais a nevar būt vienāds ar 0.