Izrēķināt
\frac{1152000000000000000000000000000000000000000}{5037851}\approx 2,286689305 \cdot 10^{35}
Sadalīt reizinātājos
\frac{2 ^ {46} \cdot 3 ^ {2} \cdot 5 ^ {39}}{7 \cdot 13 \cdot 23 \cdot 29 \cdot 83} = 2,2866893046261194 \times 10^{35}\frac{336198}{5037851} = 2,2866893046261194 \times 10^{35}
Koplietot
Kopēts starpliktuvē
\frac{9\times 10^{8}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-42}\times 91\times 166\times 10^{-27}}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet -11 un -31, lai iegūtu -42.
\frac{9\times 10^{8}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-69}\times 91\times 166}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet -42 un -27, lai iegūtu -69.
\frac{9\times 10^{77}\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Lai dalītu vienas bāzes pakāpes, atņemiet saucēja kāpinātāju no skaitītāja kāpinātāja.
\frac{9\times 100000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Aprēķiniet 10 pakāpē 77 un iegūstiet 100000000000000000000000000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Reiziniet 9 un 100000000000000000000000000000000000000000000000000000000000000000000000000000, lai iegūtu 900000000000000000000000000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(16\times \frac{1}{10000000000000000000}\right)^{2}}{91\times 166\times 667}
Aprēķiniet 10 pakāpē -19 un iegūstiet \frac{1}{10000000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \left(\frac{1}{625000000000000000}\right)^{2}}{91\times 166\times 667}
Reiziniet 16 un \frac{1}{10000000000000000000}, lai iegūtu \frac{1}{625000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000000000000000000000000\times \frac{1}{390625000000000000000000000000000000}}{91\times 166\times 667}
Aprēķiniet \frac{1}{625000000000000000} pakāpē 2 un iegūstiet \frac{1}{390625000000000000000000000000000000}.
\frac{2304000000000000000000000000000000000000000}{91\times 166\times 667}
Reiziniet 900000000000000000000000000000000000000000000000000000000000000000000000000000 un \frac{1}{390625000000000000000000000000000000}, lai iegūtu 2304000000000000000000000000000000000000000.
\frac{2304000000000000000000000000000000000000000}{15106\times 667}
Reiziniet 91 un 166, lai iegūtu 15106.
\frac{2304000000000000000000000000000000000000000}{10075702}
Reiziniet 15106 un 667, lai iegūtu 10075702.
\frac{1152000000000000000000000000000000000000000}{5037851}
Vienādot daļskaitli \frac{2304000000000000000000000000000000000000000}{10075702} līdz mazākajam loceklim, izvelkot un saīsinot 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}