Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc y
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{8y}{6y\left(-3y+2\right)}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos.
\frac{4}{3\left(-3y+2\right)}
Saīsiniet 2y gan skaitītājā, gan saucējā.
\frac{4}{-9y+6}
Izvērsiet izteiksmi.
\frac{\left(12y^{1}-18y^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(8y^{1})-8y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(12y^{1}-18y^{2})}{\left(12y^{1}-18y^{2}\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{1-1}-8y^{1}\left(12y^{1-1}+2\left(-18\right)y^{2-1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vienkāršojiet.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Reiziniet 12y^{1}-18y^{2} reiz 8y^{0}.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-\left(8y^{1}\times 12y^{0}+8y^{1}\left(-36\right)y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Reiziniet 8y^{1} reiz 12y^{0}-36y^{1}.
\frac{12\times 8y^{1}-18\times 8y^{2}-\left(8\times 12y^{1}+8\left(-36\right)y^{1+1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{96y^{1}-144y^{2}-\left(96y^{1}-288y^{2}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vienkāršojiet.
\frac{144y^{2}}{\left(12y^{1}-18y^{2}\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{144y^{2}}{\left(12y-18y^{2}\right)^{2}}
Jebkuram loceklim t t^{1}=t.