Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. x un x+1 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir x\left(x+1\right). Reiziniet \frac{7}{x} reiz \frac{x+1}{x+1}. Reiziniet \frac{6}{x+1} reiz \frac{x}{x}.
\frac{7\left(x+1\right)-6x}{x\left(x+1\right)}
Tā kā \frac{7\left(x+1\right)}{x\left(x+1\right)} un \frac{6x}{x\left(x+1\right)} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{7x+7-6x}{x\left(x+1\right)}
Veiciet reizināšanas darbības izteiksmē 7\left(x+1\right)-6x.
\frac{x+7}{x\left(x+1\right)}
Apvienojiet līdzīgos locekļus izteiksmē 7x+7-6x.
\frac{x+7}{x^{2}+x}
Paplašiniet x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)})
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. x un x+1 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir x\left(x+1\right). Reiziniet \frac{7}{x} reiz \frac{x+1}{x+1}. Reiziniet \frac{6}{x+1} reiz \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)-6x}{x\left(x+1\right)})
Tā kā \frac{7\left(x+1\right)}{x\left(x+1\right)} un \frac{6x}{x\left(x+1\right)} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+7-6x}{x\left(x+1\right)})
Veiciet reizināšanas darbības izteiksmē 7\left(x+1\right)-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x\left(x+1\right)})
Apvienojiet līdzīgos locekļus izteiksmē 7x+7-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x})
Izmantojiet distributīvo īpašību, lai reizinātu x ar x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Vienkāršojiet.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Reiziniet x^{2}+x^{1} reiz x^{0}.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Reiziniet x^{1}+7 reiz 2x^{1}+x^{0}.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}+14x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Vienkāršojiet.
\frac{-x^{2}-14x^{1}-7x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{-x^{2}-14x-7x^{0}}{\left(x^{2}+x\right)^{2}}
Jebkuram loceklim t t^{1}=t.
\frac{-x^{2}-14x-7}{\left(x^{2}+x\right)^{2}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.