Izrēķināt
\sqrt{5}\approx 2,236067977
Koplietot
Kopēts starpliktuvē
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{7+3\sqrt{5}}{3+\sqrt{5}}, reizinot skaitītāju un saucēju ar 3-\sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Apsveriet \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{9-5}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Kāpiniet 3 kvadrātā. Kāpiniet \sqrt{5} kvadrātā.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Atņemiet 5 no 9, lai iegūtu 4.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Atbrīvojieties no iracionalitātes saucēju ar \frac{7-3\sqrt{5}}{3-\sqrt{5}}, reizinot skaitītāju un saucēju ar 3+\sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Apsveriet \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{9-5}
Kāpiniet 3 kvadrātā. Kāpiniet \sqrt{5} kvadrātā.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}
Atņemiet 5 no 9, lai iegūtu 4.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}
Tā kā \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4} un \frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15}{4}
Veiciet reizināšanas darbības izteiksmē \left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Veiciet aprēķinus izteiksmē 21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15.
\sqrt{5}
Saīsiniet 4 un 4.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}