Izrēķināt
\frac{n^{2}}{4}
Diferencēt pēc n
\frac{n}{2}
Koplietot
Kopēts starpliktuvē
\frac{3n}{2}\times \frac{n}{6}
Noīsiniet lielāko kopējo reizinātāju 4 šeit: 2 un 4.
\frac{3nn}{2\times 6}
Reiziniet \frac{3n}{2} ar \frac{n}{6}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{nn}{2\times 2}
Saīsiniet 3 gan skaitītājā, gan saucējā.
\frac{n^{2}}{2\times 2}
Reiziniet n un n, lai iegūtu n^{2}.
\frac{n^{2}}{4}
Reiziniet 2 un 2, lai iegūtu 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3n}{2}\times \frac{n}{6})
Noīsiniet lielāko kopējo reizinātāju 4 šeit: 2 un 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3nn}{2\times 6})
Reiziniet \frac{3n}{2} ar \frac{n}{6}, reizinot skaitītāju ar skaitītāju un saucēju ar saucēju.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{nn}{2\times 2})
Saīsiniet 3 gan skaitītājā, gan saucējā.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{2\times 2})
Reiziniet n un n, lai iegūtu n^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{4})
Reiziniet 2 un 2, lai iegūtu 4.
2\times \frac{1}{4}n^{2-1}
ax^{n} atvasinājums ir nax^{n-1}.
\frac{1}{2}n^{2-1}
Reiziniet 2 reiz \frac{1}{4}.
\frac{1}{2}n^{1}
Atņemiet 1 no 2.
\frac{1}{2}n
Jebkuram loceklim t t^{1}=t.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}