Atrast x
x=-1
x=3
Graph
Koplietot
Kopēts starpliktuvē
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Mainīgais x nevar būt vienāds ar jebkuru no vērtībām -2,0, jo dalīšana ar nulli nav definēta. Reiziniet abas vienādojuma puses ar x\left(x+2\right), kas ir mazākais x,x+2 skaitlis, kas dalās bez atlikuma.
3x+6+x\times 5=2x\left(x+2\right)
Izmantojiet distributīvo īpašību, lai reizinātu x+2 ar 3.
8x+6=2x\left(x+2\right)
Savelciet 3x un x\times 5, lai iegūtu 8x.
8x+6=2x^{2}+4x
Izmantojiet distributīvo īpašību, lai reizinātu 2x ar x+2.
8x+6-2x^{2}=4x
Atņemiet 2x^{2} no abām pusēm.
8x+6-2x^{2}-4x=0
Atņemiet 4x no abām pusēm.
4x+6-2x^{2}=0
Savelciet 8x un -4x, lai iegūtu 4x.
2x+3-x^{2}=0
Daliet abas puses ar 2.
-x^{2}+2x+3=0
Pārkārtojiet polinomu, lai tas būtu standarta formā. Sakārtojiet locekļus secībā no lielākās līdz mazākajai pakāpei.
a+b=2 ab=-3=-3
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā -x^{2}+ax+bx+3. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=3 b=-1
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir pozitīvs, pozitīvam skaitlim ir lielāks absolūtā vērtība nekā negatīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Pārrakstiet -x^{2}+2x+3 kā \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Sadaliet -x pirmo un -1 otrajā grupā.
\left(x-3\right)\left(-x-1\right)
Iznesiet kopējo reizinātāju x-3 pirms iekavām, izmantojot distributīvo īpašību.
x=3 x=-1
Lai atrastu vienādojumu risinājumus, atrisiniet x-3=0 un -x-1=0.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Mainīgais x nevar būt vienāds ar jebkuru no vērtībām -2,0, jo dalīšana ar nulli nav definēta. Reiziniet abas vienādojuma puses ar x\left(x+2\right), kas ir mazākais x,x+2 skaitlis, kas dalās bez atlikuma.
3x+6+x\times 5=2x\left(x+2\right)
Izmantojiet distributīvo īpašību, lai reizinātu x+2 ar 3.
8x+6=2x\left(x+2\right)
Savelciet 3x un x\times 5, lai iegūtu 8x.
8x+6=2x^{2}+4x
Izmantojiet distributīvo īpašību, lai reizinātu 2x ar x+2.
8x+6-2x^{2}=4x
Atņemiet 2x^{2} no abām pusēm.
8x+6-2x^{2}-4x=0
Atņemiet 4x no abām pusēm.
4x+6-2x^{2}=0
Savelciet 8x un -4x, lai iegūtu 4x.
-2x^{2}+4x+6=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar -2, b ar 4 un c ar 6.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 6}}{2\left(-2\right)}
Kāpiniet 4 kvadrātā.
x=\frac{-4±\sqrt{16+8\times 6}}{2\left(-2\right)}
Reiziniet -4 reiz -2.
x=\frac{-4±\sqrt{16+48}}{2\left(-2\right)}
Reiziniet 8 reiz 6.
x=\frac{-4±\sqrt{64}}{2\left(-2\right)}
Pieskaitiet 16 pie 48.
x=\frac{-4±8}{2\left(-2\right)}
Izvelciet kvadrātsakni no 64.
x=\frac{-4±8}{-4}
Reiziniet 2 reiz -2.
x=\frac{4}{-4}
Tagad atrisiniet vienādojumu x=\frac{-4±8}{-4}, ja ± ir pluss. Pieskaitiet -4 pie 8.
x=-1
Daliet 4 ar -4.
x=-\frac{12}{-4}
Tagad atrisiniet vienādojumu x=\frac{-4±8}{-4}, ja ± ir mīnuss. Atņemiet 8 no -4.
x=3
Daliet -12 ar -4.
x=-1 x=3
Vienādojums tagad ir atrisināts.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Mainīgais x nevar būt vienāds ar jebkuru no vērtībām -2,0, jo dalīšana ar nulli nav definēta. Reiziniet abas vienādojuma puses ar x\left(x+2\right), kas ir mazākais x,x+2 skaitlis, kas dalās bez atlikuma.
3x+6+x\times 5=2x\left(x+2\right)
Izmantojiet distributīvo īpašību, lai reizinātu x+2 ar 3.
8x+6=2x\left(x+2\right)
Savelciet 3x un x\times 5, lai iegūtu 8x.
8x+6=2x^{2}+4x
Izmantojiet distributīvo īpašību, lai reizinātu 2x ar x+2.
8x+6-2x^{2}=4x
Atņemiet 2x^{2} no abām pusēm.
8x+6-2x^{2}-4x=0
Atņemiet 4x no abām pusēm.
4x+6-2x^{2}=0
Savelciet 8x un -4x, lai iegūtu 4x.
4x-2x^{2}=-6
Atņemiet 6 no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
-2x^{2}+4x=-6
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{6}{-2}
Daliet abas puses ar -2.
x^{2}+\frac{4}{-2}x=-\frac{6}{-2}
Dalīšana ar -2 atsauc reizināšanu ar -2.
x^{2}-2x=-\frac{6}{-2}
Daliet 4 ar -2.
x^{2}-2x=3
Daliet -6 ar -2.
x^{2}-2x+1=3+1
Daliet locekļa x koeficientu -2 ar 2, lai iegūtu -1. Pēc tam abām vienādojuma pusēm pieskaitiet -1 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}-2x+1=4
Pieskaitiet 3 pie 1.
\left(x-1\right)^{2}=4
Sadaliet reizinātājos x^{2}-2x+1. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x-1=2 x-1=-2
Vienkāršojiet.
x=3 x=-1
Pieskaitiet 1 abās vienādojuma pusēs.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}