Izrēķināt
\frac{881721}{24025000000000000000000000000000}\approx 3,670014568 \cdot 10^{-26}
Sadalīt reizinātājos
\frac{3 ^ {2} \cdot 313 ^ {2}}{2 ^ {27} \cdot 5 ^ {29} \cdot 31 ^ {2}} = 3,6700145681581686 \times 10^{-26}
Koplietot
Kopēts starpliktuvē
\frac{3^{2}\times \left(6\times 626\times 10^{-34}\right)^{2}}{8\times 9\times 1\times 10^{-40}\times 4805}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet -31 un -9, lai iegūtu -40.
\frac{9\times \left(6\times 626\times 10^{-34}\right)^{2}}{8\times 9\times 1\times 10^{-40}\times 4805}
Aprēķiniet 3 pakāpē 2 un iegūstiet 9.
\frac{9\times \left(3756\times 10^{-34}\right)^{2}}{8\times 9\times 1\times 10^{-40}\times 4805}
Reiziniet 6 un 626, lai iegūtu 3756.
\frac{9\times \left(3756\times \frac{1}{10000000000000000000000000000000000}\right)^{2}}{8\times 9\times 1\times 10^{-40}\times 4805}
Aprēķiniet 10 pakāpē -34 un iegūstiet \frac{1}{10000000000000000000000000000000000}.
\frac{9\times \left(\frac{939}{2500000000000000000000000000000000}\right)^{2}}{8\times 9\times 1\times 10^{-40}\times 4805}
Reiziniet 3756 un \frac{1}{10000000000000000000000000000000000}, lai iegūtu \frac{939}{2500000000000000000000000000000000}.
\frac{9\times \frac{881721}{6250000000000000000000000000000000000000000000000000000000000000000}}{8\times 9\times 1\times 10^{-40}\times 4805}
Aprēķiniet \frac{939}{2500000000000000000000000000000000} pakāpē 2 un iegūstiet \frac{881721}{6250000000000000000000000000000000000000000000000000000000000000000}.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{8\times 9\times 1\times 10^{-40}\times 4805}
Reiziniet 9 un \frac{881721}{6250000000000000000000000000000000000000000000000000000000000000000}, lai iegūtu \frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{72\times 1\times 10^{-40}\times 4805}
Reiziniet 8 un 9, lai iegūtu 72.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{72\times 10^{-40}\times 4805}
Reiziniet 72 un 1, lai iegūtu 72.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{72\times \frac{1}{10000000000000000000000000000000000000000}\times 4805}
Aprēķiniet 10 pakāpē -40 un iegūstiet \frac{1}{10000000000000000000000000000000000000000}.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{\frac{9}{1250000000000000000000000000000000000000}\times 4805}
Reiziniet 72 un \frac{1}{10000000000000000000000000000000000000000}, lai iegūtu \frac{9}{1250000000000000000000000000000000000000}.
\frac{\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}}{\frac{8649}{250000000000000000000000000000000000000}}
Reiziniet \frac{9}{1250000000000000000000000000000000000000} un 4805, lai iegūtu \frac{8649}{250000000000000000000000000000000000000}.
\frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000}\times \frac{250000000000000000000000000000000000000}{8649}
Daliet \frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000} ar \frac{8649}{250000000000000000000000000000000000000}, reizinot \frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000} ar apgriezto daļskaitli \frac{8649}{250000000000000000000000000000000000000} .
\frac{881721}{24025000000000000000000000000000}
Reiziniet \frac{7935489}{6250000000000000000000000000000000000000000000000000000000000000000} un \frac{250000000000000000000000000000000000000}{8649}, lai iegūtu \frac{881721}{24025000000000000000000000000000}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}