Atrast x
x = \frac{32 \sqrt{7} - 8 \sqrt{35}}{11} \approx 3,394127608
Graph
Koplietot
Kopēts starpliktuvē
\frac{4}{5}\times 5^{\frac{1}{2}}\left(2\sqrt{7}-x\right)=x
Reiziniet vienādojuma abas puses ar 4.
\frac{4}{5}\times 5^{\frac{1}{2}}\times 2\sqrt{7}+\frac{4}{5}\times 5^{\frac{1}{2}}\left(-1\right)x=x
Izmantojiet distributīvo īpašību, lai reizinātu \frac{4}{5}\times 5^{\frac{1}{2}} ar 2\sqrt{7}-x.
\frac{4\times 2}{5}\times 5^{\frac{1}{2}}\sqrt{7}+\frac{4}{5}\times 5^{\frac{1}{2}}\left(-1\right)x=x
Izsakiet \frac{4}{5}\times 2 kā vienu daļskaitli.
\frac{8}{5}\times 5^{\frac{1}{2}}\sqrt{7}+\frac{4}{5}\times 5^{\frac{1}{2}}\left(-1\right)x=x
Reiziniet 4 un 2, lai iegūtu 8.
\frac{8}{5}\times 5^{\frac{1}{2}}\sqrt{7}-\frac{4}{5}\times 5^{\frac{1}{2}}x=x
Reiziniet \frac{4}{5} un -1, lai iegūtu -\frac{4}{5}.
\frac{8}{5}\times 5^{\frac{1}{2}}\sqrt{7}-\frac{4}{5}\times 5^{\frac{1}{2}}x-x=0
Atņemiet x no abām pusēm.
-\frac{4}{5}\times 5^{\frac{1}{2}}x-x=-\frac{8}{5}\times 5^{\frac{1}{2}}\sqrt{7}
Atņemiet \frac{8}{5}\times 5^{\frac{1}{2}}\sqrt{7} no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
-\frac{4}{5}\sqrt{5}x-x=-\frac{8}{5}\sqrt{5}\sqrt{7}
Pārkārtojiet locekļus.
-\frac{4}{5}\sqrt{5}x-x=-\frac{8}{5}\sqrt{35}
Lai reiziniet \sqrt{5} un \sqrt{7}, reiziniet numurus zem kvadrātveida saknes.
\left(-\frac{4}{5}\sqrt{5}-1\right)x=-\frac{8}{5}\sqrt{35}
Savelciet visus locekļus, kuros ir x.
\left(-\frac{4\sqrt{5}}{5}-1\right)x=-\frac{8\sqrt{35}}{5}
Vienādojums ir standarta formā.
\frac{\left(-\frac{4\sqrt{5}}{5}-1\right)x}{-\frac{4\sqrt{5}}{5}-1}=-\frac{\frac{8\sqrt{35}}{5}}{-\frac{4\sqrt{5}}{5}-1}
Daliet abas puses ar -\frac{4}{5}\sqrt{5}-1.
x=-\frac{\frac{8\sqrt{35}}{5}}{-\frac{4\sqrt{5}}{5}-1}
Dalīšana ar -\frac{4}{5}\sqrt{5}-1 atsauc reizināšanu ar -\frac{4}{5}\sqrt{5}-1.
x=-\frac{8\sqrt{7}\left(\sqrt{5}-4\right)}{11}
Daliet -\frac{8\sqrt{35}}{5} ar -\frac{4}{5}\sqrt{5}-1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}