Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Atbrīvojieties no iracionalitātes saucēju ar \frac{2\sqrt{3}}{7+\sqrt{6}}, reizinot skaitītāju un saucēju ar 7-\sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Apsveriet \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
Kāpiniet 7 kvadrātā. Kāpiniet \sqrt{6} kvadrātā.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
Atņemiet 6 no 49, lai iegūtu 43.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
Izmantojiet distributīvo īpašību, lai reizinātu 2\sqrt{3} ar 7-\sqrt{6}.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
Sadaliet reizinātājos 6=3\times 2. Pārrakstiet reizinājuma kvadrātsakni \sqrt{3\times 2} kā kvadrātveida saknes \sqrt{3}\sqrt{2}.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
Reiziniet \sqrt{3} un \sqrt{3}, lai iegūtu 3.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
Reiziniet -2 un 3, lai iegūtu -6.