Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Reālā daļa
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Reiziniet gan skaitītāju, gan saucēju ar saucēja komplekso konjugātu 3-i.
\frac{\left(1-i\right)\left(3-i\right)}{3^{2}-i^{2}}
Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\right)\left(3-i\right)}{10}
Pēc definīcijas i^{2} ir -1. Aprēķiniet saucēju.
\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{10}
Reiziniet kompleksos skaitļus 1-i un 3-i līdzīgi kā binomus.
\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{10}
Pēc definīcijas i^{2} ir -1.
\frac{3-i-3i-1}{10}
Veiciet reizināšanas darbības izteiksmē 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
\frac{3-1+\left(-1-3\right)i}{10}
Savelciet reālās un imaginārās daļas izteiksmē 3-i-3i-1.
\frac{2-4i}{10}
Veiciet saskaitīšanu izteiksmē 3-1+\left(-1-3\right)i.
\frac{1}{5}-\frac{2}{5}i
Daliet 2-4i ar 10, lai iegūtu \frac{1}{5}-\frac{2}{5}i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Reiziniet \frac{1-i}{3+i} skaitītāju un saucēju ar saucēja komplekso konjugātu 3-i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{3^{2}-i^{2}})
Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-i\right)\left(3-i\right)}{10})
Pēc definīcijas i^{2} ir -1. Aprēķiniet saucēju.
Re(\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{10})
Reiziniet kompleksos skaitļus 1-i un 3-i līdzīgi kā binomus.
Re(\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{10})
Pēc definīcijas i^{2} ir -1.
Re(\frac{3-i-3i-1}{10})
Veiciet reizināšanas darbības izteiksmē 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
Re(\frac{3-1+\left(-1-3\right)i}{10})
Savelciet reālās un imaginārās daļas izteiksmē 3-i-3i-1.
Re(\frac{2-4i}{10})
Veiciet saskaitīšanu izteiksmē 3-1+\left(-1-3\right)i.
Re(\frac{1}{5}-\frac{2}{5}i)
Daliet 2-4i ar 10, lai iegūtu \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}
\frac{1}{5}-\frac{2}{5}i reālā daļa ir \frac{1}{5}.