Izrēķināt
\frac{x-14}{2x-5}
Paplašināt
\frac{x-14}{2x-5}
Graph
Koplietot
Kopēts starpliktuvē
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Sadaliet reizinātājos 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. \left(x-2\right)\left(2x-5\right) un x-2 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir \left(x-2\right)\left(2x-5\right). Reiziniet \frac{x-5}{x-2} reiz \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Tā kā \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} un \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Veiciet reizināšanas darbības izteiksmē 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Apvienojiet līdzīgos locekļus izteiksmē 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Saīsiniet x-2 gan skaitītājā, gan saucējā.
\frac{2x-13-\left(x+1\right)}{2x-5}
Tā kā \frac{2x-13}{2x-5} un \frac{x+1}{2x-5} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{2x-13-x-1}{2x-5}
Veiciet reizināšanas darbības izteiksmē 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Apvienojiet līdzīgos locekļus izteiksmē 2x-13-x-1.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Sadaliet reizinātājos 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. \left(x-2\right)\left(2x-5\right) un x-2 mazākais kopējais skaitlis, ar kuru dalāms bez atlikuma, ir \left(x-2\right)\left(2x-5\right). Reiziniet \frac{x-5}{x-2} reiz \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Tā kā \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} un \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Veiciet reizināšanas darbības izteiksmē 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Apvienojiet līdzīgos locekļus izteiksmē 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Saīsiniet x-2 gan skaitītājā, gan saucējā.
\frac{2x-13-\left(x+1\right)}{2x-5}
Tā kā \frac{2x-13}{2x-5} un \frac{x+1}{2x-5} ir viens un tas pats saucējs, atņemiet tos, atņemot to skaitītājus.
\frac{2x-13-x-1}{2x-5}
Veiciet reizināšanas darbības izteiksmē 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Apvienojiet līdzīgos locekļus izteiksmē 2x-13-x-1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}