Izrēķināt
\frac{2\left(5x+3\right)}{2x+1}
Diferencēt pēc x
-\frac{2}{\left(2x+1\right)^{2}}
Graph
Koplietot
Kopēts starpliktuvē
\frac{1}{2x+1}+\frac{5\left(2x+1\right)}{2x+1}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet 5 reiz \frac{2x+1}{2x+1}.
\frac{1+5\left(2x+1\right)}{2x+1}
Tā kā \frac{1}{2x+1} un \frac{5\left(2x+1\right)}{2x+1} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{1+10x+5}{2x+1}
Veiciet reizināšanas darbības izteiksmē 1+5\left(2x+1\right).
\frac{6+10x}{2x+1}
Apvienojiet līdzīgos locekļus izteiksmē 1+10x+5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2x+1}+\frac{5\left(2x+1\right)}{2x+1})
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet 5 reiz \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+5\left(2x+1\right)}{2x+1})
Tā kā \frac{1}{2x+1} un \frac{5\left(2x+1\right)}{2x+1} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+10x+5}{2x+1})
Veiciet reizināšanas darbības izteiksmē 1+5\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6+10x}{2x+1})
Apvienojiet līdzīgos locekļus izteiksmē 1+10x+5.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(10x^{1}+6)-\left(10x^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(2x^{1}+1\right)\times 10x^{1-1}-\left(10x^{1}+6\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 10x^{0}-\left(10x^{1}+6\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{2x^{1}\times 10x^{0}+10x^{0}-\left(10x^{1}\times 2x^{0}+6\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Izvērsiet, izmantojot distributīvo īpašību.
\frac{2\times 10x^{1}+10x^{0}-\left(10\times 2x^{1}+6\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{20x^{1}+10x^{0}-\left(20x^{1}+12x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{20x^{1}+10x^{0}-20x^{1}-12x^{0}}{\left(2x^{1}+1\right)^{2}}
Noņemiet liekās iekavas.
\frac{\left(20-20\right)x^{1}+\left(10-12\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{-2x^{0}}{\left(2x^{1}+1\right)^{2}}
Atņemiet 20 no 20 un 12 no 10.
\frac{-2x^{0}}{\left(2x+1\right)^{2}}
Jebkuram loceklim t t^{1}=t.
\frac{-2}{\left(2x+1\right)^{2}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}