Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc k
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{-15k^{2}}{15\left(k+3\right)k^{2}}
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos.
\frac{-1}{k+3}
Saīsiniet 15k^{2} gan skaitītājā, gan saucējā.
\frac{\left(15k^{3}+45k^{2}\right)\frac{\mathrm{d}}{\mathrm{d}k}(-15k^{2})-\left(-15k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(15k^{3}+45k^{2})\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(15k^{3}+45k^{2}\right)\times 2\left(-15\right)k^{2-1}-\left(-15k^{2}\left(3\times 15k^{3-1}+2\times 45k^{2-1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(15k^{3}+45k^{2}\right)\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Vienkāršojiet.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Reiziniet 15k^{3}+45k^{2} reiz -30k^{1}.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\times 45k^{2}-15k^{2}\times 90k^{1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Reiziniet -15k^{2} reiz 45k^{2}+90k^{1}.
\frac{15\left(-30\right)k^{3+1}+45\left(-30\right)k^{2+1}-\left(-15\times 45k^{2+2}-15\times 90k^{2+1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{-450k^{4}-1350k^{3}-\left(-675k^{4}-1350k^{3}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Vienkāršojiet.
\frac{225k^{4}-9k^{2}}{\left(15k^{3}+45k^{2}\right)^{2}}
Savelciet līdzīgus locekļus.