Izrēķināt
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0,699979336
Koplietot
Kopēts starpliktuvē
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
Atbrīvojieties no iracionalitātes saucēju ar \frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}}, reizinot skaitītāju un saucēju ar 3\sqrt{5}-2\sqrt{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Apsveriet \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Paplašiniet \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Aprēķiniet 3 pakāpē 2 un iegūstiet 9.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
Skaitļa \sqrt{5} kvadrāts ir 5.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
Reiziniet 9 un 5, lai iegūtu 45.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
Paplašiniet \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
Aprēķiniet 2 pakāpē 2 un iegūstiet 4.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
Skaitļa \sqrt{2} kvadrāts ir 2.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
Reiziniet 4 un 2, lai iegūtu 8.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Atņemiet 8 no 45, lai iegūtu 37.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Izmantojiet distributīvo īpašību, katru \sqrt{5}-\sqrt{2} locekli reizinot ar katru 3\sqrt{5}+\sqrt{2} locekli.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Skaitļa \sqrt{5} kvadrāts ir 5.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Reiziniet 3 un 5, lai iegūtu 15.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Lai reiziniet \sqrt{5} un \sqrt{2}, reiziniet numurus zem kvadrātveida saknes.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Lai reiziniet \sqrt{2} un \sqrt{5}, reiziniet numurus zem kvadrātveida saknes.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Savelciet \sqrt{10} un -3\sqrt{10}, lai iegūtu -2\sqrt{10}.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Skaitļa \sqrt{2} kvadrāts ir 2.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Atņemiet 2 no 15, lai iegūtu 13.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Izmantojiet distributīvo īpašību, katru 13-2\sqrt{10} locekli reizinot ar katru 3\sqrt{5}-2\sqrt{2} locekli.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Sadaliet reizinātājos 10=5\times 2. Pārrakstiet reizinājuma kvadrātsakni \sqrt{5\times 2} kā kvadrātveida saknes \sqrt{5}\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Reiziniet \sqrt{5} un \sqrt{5}, lai iegūtu 5.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Reiziniet -6 un 5, lai iegūtu -30.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Savelciet -26\sqrt{2} un -30\sqrt{2}, lai iegūtu -56\sqrt{2}.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
Sadaliet reizinātājos 10=2\times 5. Pārrakstiet reizinājuma kvadrātsakni \sqrt{2\times 5} kā kvadrātveida saknes \sqrt{2}\sqrt{5}.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
Reiziniet \sqrt{2} un \sqrt{2}, lai iegūtu 2.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
Reiziniet 4 un 2, lai iegūtu 8.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
Savelciet 39\sqrt{5} un 8\sqrt{5}, lai iegūtu 47\sqrt{5}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}