Izrēķināt
-\frac{101}{567}\approx -0,178130511
Sadalīt reizinātājos
-\frac{101}{567} = -0,1781305114638448
Koplietot
Kopēts starpliktuvē
\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Saskaitiet \frac{1}{3} un \frac{7}{9}, lai iegūtu \frac{10}{9}.
\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Aprēķiniet \frac{10}{9} pakāpē 2 un iegūstiet \frac{100}{81}.
\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{1}{2} no 1, lai iegūtu \frac{1}{2}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Aprēķiniet \frac{1}{2} pakāpē 2 un iegūstiet \frac{1}{4}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Aprēķiniet -2 pakāpē 3 un iegūstiet -8.
\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Reiziniet \frac{1}{4} un -8, lai iegūtu -2.
\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{3}{2} no -2, lai iegūtu -\frac{7}{2}.
\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Daliet \frac{100}{81} ar -\frac{7}{2}, reizinot \frac{100}{81} ar apgriezto daļskaitli -\frac{7}{2} .
-\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Reiziniet \frac{100}{81} un -\frac{2}{7}, lai iegūtu -\frac{200}{567}.
-\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Aprēķiniet -\frac{1}{6} pakāpē 2 un iegūstiet \frac{1}{36}.
-\frac{863}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{1}{36} no -\frac{200}{567}, lai iegūtu -\frac{863}{2268}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{1}{5} no \frac{1}{4}, lai iegūtu \frac{1}{20}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{2}{5} no 1, lai iegūtu \frac{3}{5}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
-\frac{863}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Daliet \frac{1}{20} ar \frac{9}{25}, reizinot \frac{1}{20} ar apgriezto daļskaitli \frac{9}{25} .
-\frac{863}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Reiziniet \frac{1}{20} un \frac{25}{9}, lai iegūtu \frac{5}{36}.
-\frac{137}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Saskaitiet -\frac{863}{2268} un \frac{5}{36}, lai iegūtu -\frac{137}{567}.
-\frac{137}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Atņemiet \frac{2}{9} no \frac{1}{3}, lai iegūtu \frac{1}{9}.
-\frac{137}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Atņemiet \frac{15}{8} no \frac{1}{8}, lai iegūtu -\frac{7}{4}.
-\frac{137}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
Daliet \frac{1}{9} ar -\frac{7}{4}, reizinot \frac{1}{9} ar apgriezto daļskaitli -\frac{7}{4} .
-\frac{137}{567}-\left(-\frac{4}{63}\right)
Reiziniet \frac{1}{9} un -\frac{4}{7}, lai iegūtu -\frac{4}{63}.
-\frac{137}{567}+\frac{4}{63}
Skaitļa -\frac{4}{63} pretstats ir \frac{4}{63}.
-\frac{101}{567}
Saskaitiet -\frac{137}{567} un \frac{4}{63}, lai iegūtu -\frac{101}{567}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}