Izrēķināt
-1
Koplietot
Kopēts starpliktuvē
\frac{\sqrt{3}}{\sqrt{3}-\cos(30)}-27^{\frac{1}{3}}
Iegūt \tan(60) vērtības no trigonometrisko vērtību tabulas.
\frac{\sqrt{3}}{\sqrt{3}-\frac{\sqrt{3}}{2}}-27^{\frac{1}{3}}
Iegūt \cos(30) vērtības no trigonometrisko vērtību tabulas.
\frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}}-27^{\frac{1}{3}}
Savelciet \sqrt{3} un -\frac{\sqrt{3}}{2}, lai iegūtu \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\left(\sqrt{3}\right)^{2}}-27^{\frac{1}{3}}
Atbrīvojieties no iracionalitātes saucēju ar \frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}}, reizinot skaitītāju un saucēju ar \sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Skaitļa \sqrt{3} kvadrāts ir 3.
\frac{3}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Reiziniet \sqrt{3} un \sqrt{3}, lai iegūtu 3.
\frac{3}{\frac{3}{2}}-27^{\frac{1}{3}}
Reiziniet \frac{1}{2} un 3, lai iegūtu \frac{3}{2}.
3\times \frac{2}{3}-27^{\frac{1}{3}}
Daliet 3 ar \frac{3}{2}, reizinot 3 ar apgriezto daļskaitli \frac{3}{2} .
2-27^{\frac{1}{3}}
Reiziniet 3 un \frac{2}{3}, lai iegūtu 2.
2-3
Aprēķiniet 27 pakāpē \frac{1}{3} un iegūstiet 3.
-1
Atņemiet 3 no 2, lai iegūtu -1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}