Izrēķināt
\frac{87}{760}\approx 0,114473684
Sadalīt reizinātājos
\frac{3 \cdot 29}{2 ^ {3} \cdot 5 \cdot 19} = 0,11447368421052631
Koplietot
Kopēts starpliktuvē
\frac{\left(2-\frac{3}{5}\right)^{2}+\frac{5}{8}-\frac{3}{4}-\frac{6}{5}\times \frac{1}{3}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Reiziniet 1 un \frac{3}{5}, lai iegūtu \frac{3}{5}.
\frac{\left(\frac{7}{5}\right)^{2}+\frac{5}{8}-\frac{3}{4}-\frac{6}{5}\times \frac{1}{3}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Atņemiet \frac{3}{5} no 2, lai iegūtu \frac{7}{5}.
\frac{\frac{49}{25}+\frac{5}{8}-\frac{3}{4}-\frac{6}{5}\times \frac{1}{3}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Aprēķiniet \frac{7}{5} pakāpē 2 un iegūstiet \frac{49}{25}.
\frac{\frac{517}{200}-\frac{3}{4}-\frac{6}{5}\times \frac{1}{3}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Saskaitiet \frac{49}{25} un \frac{5}{8}, lai iegūtu \frac{517}{200}.
\frac{\frac{367}{200}-\frac{6}{5}\times \frac{1}{3}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Atņemiet \frac{3}{4} no \frac{517}{200}, lai iegūtu \frac{367}{200}.
\frac{\frac{367}{200}-\frac{2}{5}\times 7\times \frac{1}{2}}{5-\frac{6}{5}}
Reiziniet \frac{6}{5} un \frac{1}{3}, lai iegūtu \frac{2}{5}.
\frac{\frac{367}{200}-\frac{14}{5}\times \frac{1}{2}}{5-\frac{6}{5}}
Reiziniet \frac{2}{5} un 7, lai iegūtu \frac{14}{5}.
\frac{\frac{367}{200}-\frac{7}{5}}{5-\frac{6}{5}}
Reiziniet \frac{14}{5} un \frac{1}{2}, lai iegūtu \frac{7}{5}.
\frac{\frac{87}{200}}{5-\frac{6}{5}}
Atņemiet \frac{7}{5} no \frac{367}{200}, lai iegūtu \frac{87}{200}.
\frac{\frac{87}{200}}{\frac{19}{5}}
Atņemiet \frac{6}{5} no 5, lai iegūtu \frac{19}{5}.
\frac{87}{200}\times \frac{5}{19}
Daliet \frac{87}{200} ar \frac{19}{5}, reizinot \frac{87}{200} ar apgriezto daļskaitli \frac{19}{5} .
\frac{87}{760}
Reiziniet \frac{87}{200} un \frac{5}{19}, lai iegūtu \frac{87}{760}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}