Izrēķināt
-\frac{9}{16}=-0,5625
Sadalīt reizinātājos
-\frac{9}{16} = -0,5625
Koplietot
Kopēts starpliktuvē
\frac{\left(\frac{4}{25}\times \left(\frac{1}{4}\right)^{2}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet -\frac{2}{5} pakāpē 2 un iegūstiet \frac{4}{25}.
\frac{\left(\frac{4}{25}\times \frac{1}{16}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet \frac{1}{4} pakāpē 2 un iegūstiet \frac{1}{16}.
\frac{\left(\frac{1}{100}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Reiziniet \frac{4}{25} un \frac{1}{16}, lai iegūtu \frac{1}{100}.
\frac{\frac{1}{10000}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet \frac{1}{100} pakāpē 2 un iegūstiet \frac{1}{10000}.
\frac{\frac{1}{10000}}{\left(25\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet 5 pakāpē 2 un iegūstiet 25.
\frac{\frac{1}{10000}}{\left(25\times 4\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet 2 pakāpē 2 un iegūstiet 4.
\frac{\frac{1}{10000}}{100^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Reiziniet 25 un 4, lai iegūtu 100.
\frac{\frac{1}{10000}}{\frac{1}{10000}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Aprēķiniet 100 pakāpē -2 un iegūstiet \frac{1}{10000}.
1-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Daliet \frac{1}{10000} ar \frac{1}{10000}, lai iegūtu 1.
1-\left(-\frac{4}{5}\right)^{-4}\times \left(\frac{4}{5}\right)^{2}
Lai dalītu vienas bāzes pakāpes, atņemiet saucēja kāpinātāju no skaitītāja kāpinātāja.
1-\frac{625}{256}\times \left(\frac{4}{5}\right)^{2}
Aprēķiniet -\frac{4}{5} pakāpē -4 un iegūstiet \frac{625}{256}.
1-\frac{625}{256}\times \frac{16}{25}
Aprēķiniet \frac{4}{5} pakāpē 2 un iegūstiet \frac{16}{25}.
1-\frac{25}{16}
Reiziniet \frac{625}{256} un \frac{16}{25}, lai iegūtu \frac{25}{16}.
-\frac{9}{16}
Atņemiet \frac{25}{16} no 1, lai iegūtu -\frac{9}{16}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}