Izrēķināt
4
Sadalīt reizinātājos
2^{2}
Koplietot
Kopēts starpliktuvē
\frac{\left(\frac{1}{8}\times \frac{1}{8}\right)^{\frac{1}{6}}}{1-\frac{1}{2}}-\frac{-2+\frac{2}{\frac{4}{3}}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Reiziniet \frac{1}{2} un \frac{1}{4}, lai iegūtu \frac{1}{8}.
\frac{\left(\frac{1}{64}\right)^{\frac{1}{6}}}{1-\frac{1}{2}}-\frac{-2+\frac{2}{\frac{4}{3}}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Reiziniet \frac{1}{8} un \frac{1}{8}, lai iegūtu \frac{1}{64}.
\frac{\frac{1}{2}}{1-\frac{1}{2}}-\frac{-2+\frac{2}{\frac{4}{3}}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Aprēķiniet \frac{1}{64} pakāpē \frac{1}{6} un iegūstiet \frac{1}{2}.
\frac{\frac{1}{2}}{\frac{1}{2}}-\frac{-2+\frac{2}{\frac{4}{3}}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Atņemiet \frac{1}{2} no 1, lai iegūtu \frac{1}{2}.
1-\frac{-2+\frac{2}{\frac{4}{3}}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Daliet \frac{1}{2} ar \frac{1}{2}, lai iegūtu 1.
1-\frac{-2+2\times \frac{3}{4}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Daliet 2 ar \frac{4}{3}, reizinot 2 ar apgriezto daļskaitli \frac{4}{3} .
1-\frac{-2+\frac{3}{2}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Reiziniet 2 un \frac{3}{4}, lai iegūtu \frac{3}{2}.
1-\frac{-\frac{1}{2}}{1-\frac{1}{\frac{2}{3}}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Saskaitiet -2 un \frac{3}{2}, lai iegūtu -\frac{1}{2}.
1-\frac{-\frac{1}{2}}{1-1\times \frac{3}{2}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Daliet 1 ar \frac{2}{3}, reizinot 1 ar apgriezto daļskaitli \frac{2}{3} .
1-\frac{-\frac{1}{2}}{1-\frac{3}{2}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Reiziniet 1 un \frac{3}{2}, lai iegūtu \frac{3}{2}.
1-\frac{-\frac{1}{2}}{-\frac{1}{2}}+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Atņemiet \frac{3}{2} no 1, lai iegūtu -\frac{1}{2}.
1-1+\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Daliet -\frac{1}{2} ar -\frac{1}{2}, lai iegūtu 1.
\sqrt{\frac{2-\frac{2}{3}}{\frac{1}{3}-\frac{1}{4}}}
Atņemiet 1 no 1, lai iegūtu 0.
\sqrt{\frac{\frac{4}{3}}{\frac{1}{3}-\frac{1}{4}}}
Atņemiet \frac{2}{3} no 2, lai iegūtu \frac{4}{3}.
\sqrt{\frac{\frac{4}{3}}{\frac{1}{12}}}
Atņemiet \frac{1}{4} no \frac{1}{3}, lai iegūtu \frac{1}{12}.
\sqrt{\frac{4}{3}\times 12}
Daliet \frac{4}{3} ar \frac{1}{12}, reizinot \frac{4}{3} ar apgriezto daļskaitli \frac{1}{12} .
\sqrt{16}
Reiziniet \frac{4}{3} un 12, lai iegūtu 16.
4
Aprēķināt kvadrātsakni no 16 un iegūt 4.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}