Skip ໄປຫາເນື້ອຫາຫຼັກ
Microsoft
|
Math Solver
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ພື້ນຖານ
algebra
trigonometry
calculus
ສະຖິຕິ
matrices
ຕົວອັກສອນ
ປະເມີນ
1
ເບິ່ງຂັ້ນຕອນການແກ້ໄຂ
ຂັ້ນຕອນການແກ້
\sin ( \frac { \pi } { 2 } )
ຮັບຄ່າຂອງ \sin(\frac{\pi }{2}) ຈາກຕາຕະລາງຄ່າຕີໂກນມິຕິ.
1
ຕົວປະກອບ
1
Quiz
Trigonometry
\sin ( \frac { \pi } { 2 } )
ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search
How to find exact value of \displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}} ?
https://socratic.org/questions/59f61ae811ef6b5f7f1618c6
\displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}}=\frac{{1}}{{2}}\sqrt{{{2}-\sqrt{{{2}+\sqrt{{3}}}}}} Explanation: As \displaystyle\frac{\pi}{{24}}=\frac{{180}^{\circ}}{{24}}={\left({7}\frac{{1}}{{2}}\right)}^{\circ} ...
Can \sin(\pi/25) be expressed in radicals
https://math.stackexchange.com/questions/1288769/can-sin-pi-25-be-expressed-in-radicals
The answer to this question depends on exactly what you mean by expressed in radicals. In the sense which is usually meant in Galois theory courses, \cos \pi/25 is expressible in radicals, but in a ...
How to calculate \cos(\pi/4) and \sin(\pi/4)? [closed]
https://math.stackexchange.com/q/2074238
In the sum of angle theorems, let a=b so that \cos(2a)=\cos^2(a)-\sin^2(a) By the last identity, notice that \cos^2(a)-\sin^2(a)=2\cos^2(a)-1 \cos^2(a)-\sin^2(a)=1-2\sin^2(a) Now let a=\pi/4 ...
Solve \sin(\frac{\pi}{5}) analytically
https://math.stackexchange.com/q/2248326
By repeated application of angle sum formulas we may get, \sin (5x)=\sin^5 x+5 \cos^4 x\sin x-10 \sin^3 x \cos^2 x Let x=\frac{\pi}{5} and let \sin (\frac{\pi}{5})=u then we have, 0=u^5+5(1-u^2)^2 u-10(1-u^2)u^3 ...
Non-trigonometric Proof for values of \sin(\frac{\pi}{6}) and \cos(\frac{\pi}{6})
https://math.stackexchange.com/q/2113386
Hint: from \cos(2(\frac{\pi}{3})+\frac{\pi}{3})= \cos(\pi)=-1, using summation and double-angle formulas we have: \left(2\cos^2(\pi/3)-1 \right)\cos(\pi/3)-2\left(1-\cos^2(\pi/3)\right)\cos(\pi/3)+1=0 ...
Easy way of memorizing values of sine, cosine, and tangent
https://math.stackexchange.com/q/1553990
Note the pattern: \sin 0^{\circ} = \frac{\sqrt{0}}{2} \sin 30^{\circ} = \frac{\sqrt{1}}{2} \sin 45^{\circ} = \frac{\sqrt{2}}{2} \sin 60^{\circ} = \frac{\sqrt{3}}{2} \sin 90^{\circ} = \frac{\sqrt{4}}{2} ...
ລາຍການ
ແບ່ງປັນ
ສໍາເນົາ
ສໍາເນົາຄລິບ
1
ຮັບຄ່າຂອງ \sin(\frac{\pi }{2}) ຈາກຕາຕະລາງຄ່າຕີໂກນມິຕິ.
ບັນຫາທີ່ຄ້າຍຄືກັນ
\cos ( \pi )
\sin ( \frac { \pi } { 2 } )
\tan ( \frac { 4 \pi } { 3 } )
\csc ( 60 )
\sec ( 180 )
\cot ( \frac { 4 \pi } { 3 } )
ກັບຄືນສູ່ຍອດ