a खातीर सोडोवचें
a=-\frac{y\left(x+1\right)}{x^{2}}
y\neq 0\text{ and }x\neq 0
x खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}x=-\frac{\sqrt{y\left(y-4a\right)}+y}{2a}\text{; }x=-\frac{-\sqrt{y\left(y-4a\right)}+y}{2a}\text{, }&a\neq 0\text{ and }y\neq 0\\x=-1\text{, }&a=0\text{ and }y\neq 0\end{matrix}\right.
x खातीर सोडोवचें
\left\{\begin{matrix}x=-\frac{\sqrt{y\left(y-4a\right)}+y}{2a}\text{; }x=-\frac{-\sqrt{y\left(y-4a\right)}+y}{2a}\text{, }&\left(y<0\text{ or }y\geq 4a\right)\text{ and }y\neq 0\text{ and }a\neq 0\text{ and }\left(y>0\text{ or }y\leq 4a\right)\\x=-1\text{, }&a=0\text{ and }y\neq 0\end{matrix}\right.
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-axx=y\left(x+1\right)
समीकरणाच्यो दोनूय बाजू xy वरवीं गुणाकार करच्यो, y,x चो सामको सामान्य विभाज्य.
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-ax^{2}=y\left(x+1\right)
x^{2} मेळोवंक x आनी x गुणचें.
xy\frac{\mathrm{d}}{\mathrm{d}x}(y)-ax^{2}=yx+y
x+1 न y गुणपाक विभाजक विशमाचो वापर करचो.
-ax^{2}=yx+y-xy\frac{\mathrm{d}}{\mathrm{d}x}(y)
दोनूय कुशींतल्यान xy\frac{\mathrm{d}}{\mathrm{d}x}(y) वजा करचें.
\left(-x^{2}\right)a=xy+y
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{xy+y}{-x^{2}}
दोनुय कुशींक -x^{2} न भाग लावचो.
a=\frac{xy+y}{-x^{2}}
-x^{2} वरवीं भागाकार केल्यार -x^{2} वरवीं केल्लो गुणाकार काडटा.
a=-\frac{y\left(x+1\right)}{x^{2}}
-x^{2} नyx+y क भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}