w.r.t. y चो फरक काडचो
\frac{14}{15\sqrt[15]{y}}
मूल्यांकन करचें
y^{\frac{14}{15}}
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\sqrt[3]{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{3}{5}})+y^{\frac{3}{5}}\frac{\mathrm{d}}{\mathrm{d}y}(\sqrt[3]{y})
खंयच्याय दोन फरकांच्या कार्यां खातीर, दोन कार्यांच्या गुणाकाराचो व्यत्पन्न हो दुस-या व्यत्पन्न गुणिले दुसरें कार्य अदीक पयल्या व्यत्पन्न गुणिले दुसरें कार्य अशें आसा.
\sqrt[3]{y}\times \frac{3}{5}y^{\frac{3}{5}-1}+y^{\frac{3}{5}}\times \frac{1}{3}y^{\frac{1}{3}-1}
पोलिनोमियलाचें व्यत्पन्न हें तांच्या संज्ञांच्या व्यत्पन्नाची बेरीज आसता. खंयच्याय थीर संख्येचें व्यत्पन्न 0 आसता. हाचें व्यत्पन्न ax^{n} हें nax^{n-1} आसा.
\sqrt[3]{y}\times \frac{3}{5}y^{-\frac{2}{5}}+y^{\frac{3}{5}}\times \frac{1}{3}y^{-\frac{2}{3}}
सोंपें करचें.
\frac{3}{5}y^{\frac{1}{3}-\frac{2}{5}}+\frac{1}{3}y^{\frac{3}{5}-\frac{2}{3}}
समान बेझीचे पॉवर गुणूंक, तांच्या पुरकांची बेरीज करची.
\frac{3}{5}y^{-\frac{1}{15}}+\frac{1}{3}y^{-\frac{1}{15}}
सोंपें करचें.
y^{\frac{14}{15}}
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. \frac{14}{15} मेळोवंक \frac{1}{3} आनी \frac{3}{5} जोडचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}