y, x खातीर सोडोवचें
x=0
y=0
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
y+2x=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 2x जोडचे.
y-\frac{x}{2}=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{x}{2} वजा करचें.
2y-x=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y+2x=0,2y-x=0
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y+2x=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=-2x
समिकरणाच्या दोनूय कुशींतल्यान 2x वजा करचें.
2\left(-2\right)x-x=0
2y-x=0 ह्या दुस-या समिकरणांत y खातीर -2x बदलपी घेवचो.
-4x-x=0
-2xक 2 फावटी गुणचें.
-5x=0
-x कडेन -4x ची बेरीज करची.
x=0
दोनुय कुशींक -5 न भाग लावचो.
y=0
y=-2x त x खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=0,x=0
प्रणाली आतां सुटावी जाली.
y+2x=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 2x जोडचे.
y-\frac{x}{2}=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{x}{2} वजा करचें.
2y-x=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y+2x=0,2y-x=0
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 2}&-\frac{2}{-1-2\times 2}\\-\frac{2}{-1-2\times 2}&\frac{1}{-1-2\times 2}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिसीस गुणचे.
y=0,x=0
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y+2x=0
पयलें समिकरण विचारांत घेवचें. दोनूय वटांनी 2x जोडचे.
y-\frac{x}{2}=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान \frac{x}{2} वजा करचें.
2y-x=0
2 वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
y+2x=0,2y-x=0
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2y+2\times 2x=0,2y-x=0
y आनी 2y बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
2y+4x=0,2y-x=0
सोंपें करचें.
2y-2y+4x+x=0
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2y+4x=0 तल्यान 2y-x=0 वजा करचो.
4x+x=0
-2y कडेन 2y ची बेरीज करची. अटी 2y आनी -2y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
5x=0
x कडेन 4x ची बेरीज करची.
x=0
दोनुय कुशींक 5 न भाग लावचो.
2y=0
2y-x=0 त x खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=0
दोनुय कुशींक 2 न भाग लावचो.
y=0,x=0
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}