x खातीर सोडोवचें
x=2
x=-1
ग्राफ
प्रस्नमाची
Polynomial
x+4 \div { x }^{ 2 } =3
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x^{2}x+4=3x^{2}
विभागणी शुन्यची व्याख्या नाशिल्ल्यान अचल x हो 0 च्या समान आसूंक शकना. x^{2} वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
x^{3}+4=3x^{2}
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. 3 मेळोवंक 2 आनी 1 जोडचो.
x^{3}+4-3x^{2}=0
दोनूय कुशींतल्यान 3x^{2} वजा करचें.
x^{3}-3x^{2}+4=0
प्रमाणित पद्दतीन घेवंक समिकरण परतून मांडचें. सामके व्हड ते सामके ल्हान पॉवर अशा क्रमान संज्ञा मांडच्यो.
±4,±2,±1
रॅशनल रूट थियरम प्रमाणें, पोलिनोमियलाचे सगळे रॅशनल रुट्स मुखावयल्या स्वरुपात आसतात \frac{p}{q}, जंय p थीर संज्ञेक भाग लायता 4 आनी q भागता पुरक 1. सगळे उमेदवारांची सुची \frac{p}{q}.
x=-1
सगळीं पूर्णांक मोलां यत्न करून तसो एक मूळ सोदून काडचो, ल्हानातल्यान सुरू करूंन निव्वळ शून्य. पूर्णांक मुळां मेळूंक नासल्यार परत यत्न करचो.
x^{2}-4x+4=0
फॅक्टर थियरमा प्रमाणें, x-k दरेक रूट खातीर पोलिनोमियल फॅक्टर करात k. x^{2}-4x+4 मेळोवंक x^{3}-3x^{2}+4 क x+1 न भाग लावचो. समिकरण सोडोवंक, निकाल हाचे समान 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 4}}{2}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक फॉर्मूला वापरून सोडोवंक शकतात: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. क्वॉड्रेटिक फॉर्मूलात a च्या सुवातेर 1 घेवचो, b खातीर -4, आनी c खातीर 4 घेवचो.
x=\frac{4±0}{2}
मेजणी करची.
x=2
समाधानां समान आसात.
x=-1 x=2
सगळीं समाधानां प्राप्त सुची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}