मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ
प्रस्नमाची
Quadratic Equation

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=-4 ab=-60
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}-4x-60 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=6
जोडयेचें उत्तर जें दिता गणीत -4.
\left(x-10\right)\left(x+6\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=10 x=-6
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x+6=0.
a+b=-4 ab=1\left(-60\right)=-60
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-60 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=6
जोडयेचें उत्तर जें दिता गणीत -4.
\left(x^{2}-10x\right)+\left(6x-60\right)
x^{2}-4x-60 हें \left(x^{2}-10x\right)+\left(6x-60\right) बरोवचें.
x\left(x-10\right)+6\left(x-10\right)
पयल्यात xफॅक्टर आवट आनी 6 दुस-या गटात.
\left(x-10\right)\left(x+6\right)
फॅक्टर आवट सामान्य शब्द x-10 वितरीत गूणधर्म वापरून.
x=10 x=-6
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x+6=0.
x^{2}-4x-60=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-60\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर -4 आनी c खातीर -60 बदली घेवचे.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-60\right)}}{2}
-4 वर्गमूळ.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2}
-60क -4 फावटी गुणचें.
x=\frac{-\left(-4\right)±\sqrt{256}}{2}
240 कडेन 16 ची बेरीज करची.
x=\frac{-\left(-4\right)±16}{2}
256 चें वर्गमूळ घेवचें.
x=\frac{4±16}{2}
-4 च्या विरुध्दार्थी अंक 4 आसा.
x=\frac{20}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{4±16}{2} सोडोवचें. 16 कडेन 4 ची बेरीज करची.
x=10
2 न20 क भाग लावचो.
x=-\frac{12}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{4±16}{2} सोडोवचें. 4 तल्यान 16 वजा करची.
x=-6
2 न-12 क भाग लावचो.
x=10 x=-6
समिकरण आतां सुटावें जालें.
x^{2}-4x-60=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
x^{2}-4x-60-\left(-60\right)=-\left(-60\right)
समिकरणाच्या दोनूय कुशींतल्यान 60 ची बेरीज करची.
x^{2}-4x=-\left(-60\right)
तातूंतल्यानूच -60 वजा केल्यार 0 उरता.
x^{2}-4x=60
0 तल्यान -60 वजा करची.
x^{2}-4x+\left(-2\right)^{2}=60+\left(-2\right)^{2}
-2 मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -4 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -2 च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-4x+4=60+4
-2 वर्गमूळ.
x^{2}-4x+4=64
4 कडेन 60 ची बेरीज करची.
\left(x-2\right)^{2}=64
गुणकपद x^{2}-4x+4. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-2\right)^{2}}=\sqrt{64}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-2=8 x-2=-8
सोंपें करचें.
x=10 x=-6
समिकरणाच्या दोनूय कुशींतल्यान 2 ची बेरीज करची.