मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

a+b=-13 ab=30
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}-13x+30 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,-30 -2,-15 -3,-10 -5,-6
ab सकारात्मक आसा देखून, a आनी b क एकूच खूण आसा. a+b नकारात्मक आसा, a आनी b दोनूय नकारात्मक आसात. गुणक दिवपी तत्सम जोडयांची सुची 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=-3
जोडयेचें उत्तर जें दिता गणीत -13.
\left(x-10\right)\left(x-3\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=10 x=3
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x-3=0.
a+b=-13 ab=1\times 30=30
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx+30 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,-30 -2,-15 -3,-10 -5,-6
ab सकारात्मक आसा देखून, a आनी b क एकूच खूण आसा. a+b नकारात्मक आसा, a आनी b दोनूय नकारात्मक आसात. गुणक दिवपी तत्सम जोडयांची सुची 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=-3
जोडयेचें उत्तर जें दिता गणीत -13.
\left(x^{2}-10x\right)+\left(-3x+30\right)
x^{2}-13x+30 हें \left(x^{2}-10x\right)+\left(-3x+30\right) बरोवचें.
x\left(x-10\right)-3\left(x-10\right)
पयल्यात xफॅक्टर आवट आनी -3 दुस-या गटात.
\left(x-10\right)\left(x-3\right)
फॅक्टर आवट सामान्य शब्द x-10 वितरीत गूणधर्म वापरून.
x=10 x=3
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x-3=0.
x^{2}-13x+30=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 30}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर -13 आनी c खातीर 30 बदली घेवचे.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 30}}{2}
-13 वर्गमूळ.
x=\frac{-\left(-13\right)±\sqrt{169-120}}{2}
30क -4 फावटी गुणचें.
x=\frac{-\left(-13\right)±\sqrt{49}}{2}
-120 कडेन 169 ची बेरीज करची.
x=\frac{-\left(-13\right)±7}{2}
49 चें वर्गमूळ घेवचें.
x=\frac{13±7}{2}
-13 च्या विरुध्दार्थी अंक 13 आसा.
x=\frac{20}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{13±7}{2} सोडोवचें. 7 कडेन 13 ची बेरीज करची.
x=10
2 न20 क भाग लावचो.
x=\frac{6}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{13±7}{2} सोडोवचें. 13 तल्यान 7 वजा करची.
x=3
2 न6 क भाग लावचो.
x=10 x=3
समिकरण आतां सुटावें जालें.
x^{2}-13x+30=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
x^{2}-13x+30-30=-30
समिकरणाच्या दोनूय कुशींतल्यान 30 वजा करचें.
x^{2}-13x=-30
तातूंतल्यानूच 30 वजा केल्यार 0 उरता.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-30+\left(-\frac{13}{2}\right)^{2}
-\frac{13}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -13 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{13}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-13x+\frac{169}{4}=-30+\frac{169}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{13}{2} क वर्गमूळ लावचें.
x^{2}-13x+\frac{169}{4}=\frac{49}{4}
\frac{169}{4} कडेन -30 ची बेरीज करची.
\left(x-\frac{13}{2}\right)^{2}=\frac{49}{4}
गुणकपद x^{2}-13x+\frac{169}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{13}{2}=\frac{7}{2} x-\frac{13}{2}=-\frac{7}{2}
सोंपें करचें.
x=10 x=3
समिकरणाच्या दोनूय कुशींतल्यान \frac{13}{2} ची बेरीज करची.