x खातीर सोडोवचें
x=-12
x=4
ग्राफ
प्रस्नमाची
Quadratic Equation
x ^ { 2 } + 8 x = 48
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x^{2}+8x-48=0
दोनूय कुशींतल्यान 48 वजा करचें.
a+b=8 ab=-48
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}+8x-48 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,48 -2,24 -3,16 -4,12 -6,8
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
दरेक जोडयेखातीर गणीत मेजचें.
a=-4 b=12
जोडयेचें उत्तर जें दिता गणीत 8.
\left(x-4\right)\left(x+12\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=4 x=-12
गणीताचें उत्तर सोदूंक, सोडोवचें x-4=0 आनी x+12=0.
x^{2}+8x-48=0
दोनूय कुशींतल्यान 48 वजा करचें.
a+b=8 ab=1\left(-48\right)=-48
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-48 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
-1,48 -2,24 -3,16 -4,12 -6,8
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b सकारात्मक आसा, सकारात्मक संख्येक नकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
दरेक जोडयेखातीर गणीत मेजचें.
a=-4 b=12
जोडयेचें उत्तर जें दिता गणीत 8.
\left(x^{2}-4x\right)+\left(12x-48\right)
x^{2}+8x-48 हें \left(x^{2}-4x\right)+\left(12x-48\right) बरोवचें.
x\left(x-4\right)+12\left(x-4\right)
पयल्यात xफॅक्टर आवट आनी 12 दुस-या गटात.
\left(x-4\right)\left(x+12\right)
फॅक्टर आवट सामान्य शब्द x-4 वितरीत गूणधर्म वापरून.
x=4 x=-12
गणीताचें उत्तर सोदूंक, सोडोवचें x-4=0 आनी x+12=0.
x^{2}+8x=48
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x^{2}+8x-48=48-48
समिकरणाच्या दोनूय कुशींतल्यान 48 वजा करचें.
x^{2}+8x-48=0
तातूंतल्यानूच 48 वजा केल्यार 0 उरता.
x=\frac{-8±\sqrt{8^{2}-4\left(-48\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर 8 आनी c खातीर -48 बदली घेवचे.
x=\frac{-8±\sqrt{64-4\left(-48\right)}}{2}
8 वर्गमूळ.
x=\frac{-8±\sqrt{64+192}}{2}
-48क -4 फावटी गुणचें.
x=\frac{-8±\sqrt{256}}{2}
192 कडेन 64 ची बेरीज करची.
x=\frac{-8±16}{2}
256 चें वर्गमूळ घेवचें.
x=\frac{8}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-8±16}{2} सोडोवचें. 16 कडेन -8 ची बेरीज करची.
x=4
2 न8 क भाग लावचो.
x=-\frac{24}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-8±16}{2} सोडोवचें. -8 तल्यान 16 वजा करची.
x=-12
2 न-24 क भाग लावचो.
x=4 x=-12
समिकरण आतां सुटावें जालें.
x^{2}+8x=48
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
x^{2}+8x+4^{2}=48+4^{2}
4 मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो 8 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी 4 च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+8x+16=48+16
4 वर्गमूळ.
x^{2}+8x+16=64
16 कडेन 48 ची बेरीज करची.
\left(x+4\right)^{2}=64
गुणकपद x^{2}+8x+16. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+4\right)^{2}}=\sqrt{64}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+4=8 x+4=-8
सोंपें करचें.
x=4 x=-12
समिकरणाच्या दोनूय कुशींतल्यान 4 वजा करचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}