x, y खातीर सोडोवचें
x=-5
y=6
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x+2y=7,3x+5y=15
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+7
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
3\left(-2y+7\right)+5y=15
3x+5y=15 ह्या दुस-या समिकरणांत x खातीर -2y+7 बदलपी घेवचो.
-6y+21+5y=15
-2y+7क 3 फावटी गुणचें.
-y+21=15
5y कडेन -6y ची बेरीज करची.
-y=-6
समिकरणाच्या दोनूय कुशींतल्यान 21 वजा करचें.
y=6
दोनुय कुशींक -1 न भाग लावचो.
x=-2\times 6+7
x=-2y+7 त y खातीर 6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-12+7
6क -2 फावटी गुणचें.
x=-5
-12 कडेन 7 ची बेरीज करची.
x=-5,y=6
प्रणाली आतां सुटावी जाली.
x+2y=7,3x+5y=15
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\15\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
\left(\begin{matrix}1&2\\3&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 3}&-\frac{2}{5-2\times 3}\\-\frac{3}{5-2\times 3}&\frac{1}{5-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&2\\3&-1\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 7+2\times 15\\3\times 7-15\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\6\end{matrix}\right)
अंकगणीत करचें.
x=-5,y=6
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=7,3x+5y=15
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3\times 2y=3\times 7,3x+5y=15
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x+6y=21,3x+5y=15
सोंपें करचें.
3x-3x+6y-5y=21-15
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+6y=21 तल्यान 3x+5y=15 वजा करचो.
6y-5y=21-15
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
y=21-15
-5y कडेन 6y ची बेरीज करची.
y=6
-15 कडेन 21 ची बेरीज करची.
3x+5\times 6=15
3x+5y=15 त y खातीर 6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x+30=15
6क 5 फावटी गुणचें.
3x=-15
समिकरणाच्या दोनूय कुशींतल्यान 30 वजा करचें.
x=-5
दोनुय कुशींक 3 न भाग लावचो.
x=-5,y=6
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}