मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=1,3x-y=17
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+1
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
3\left(-2y+1\right)-y=17
3x-y=17 ह्या दुस-या समिकरणांत x खातीर -2y+1 बदलपी घेवचो.
-6y+3-y=17
-2y+1क 3 फावटी गुणचें.
-7y+3=17
-y कडेन -6y ची बेरीज करची.
-7y=14
समिकरणाच्या दोनूय कुशींतल्यान 3 वजा करचें.
y=-2
दोनुय कुशींक -7 न भाग लावचो.
x=-2\left(-2\right)+1
x=-2y+1 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=4+1
-2क -2 फावटी गुणचें.
x=5
4 कडेन 1 ची बेरीज करची.
x=5,y=-2
प्रणाली आतां सुटावी जाली.
x+2y=1,3x-y=17
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\17\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}1\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\17\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}+\frac{2}{7}\times 17\\\frac{3}{7}-\frac{1}{7}\times 17\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
अंकगणीत करचें.
x=5,y=-2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=1,3x-y=17
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3\times 2y=3,3x-y=17
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x+6y=3,3x-y=17
सोंपें करचें.
3x-3x+6y+y=3-17
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+6y=3 तल्यान 3x-y=17 वजा करचो.
6y+y=3-17
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
7y=3-17
y कडेन 6y ची बेरीज करची.
7y=-14
-17 कडेन 3 ची बेरीज करची.
y=-2
दोनुय कुशींक 7 न भाग लावचो.
3x-\left(-2\right)=17
3x-y=17 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x=15
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=5
दोनुय कुशींक 3 न भाग लावचो.
x=5,y=-2
प्रणाली आतां सुटावी जाली.