A खातीर सोडोवचें
A=\frac{1}{GVY\left(EM\right)^{2}}
V\neq 0\text{ and }M\neq 0\text{ and }E\neq 0\text{ and }Y\neq 0\text{ and }G\neq 0
E खातीर सोडोवचें (जटील सोल्यूशन)
E=-\frac{A^{-\frac{1}{2}}G^{-\frac{1}{2}}V^{-\frac{1}{2}}Y^{-\frac{1}{2}}}{M}
E=\frac{A^{-\frac{1}{2}}G^{-\frac{1}{2}}V^{-\frac{1}{2}}Y^{-\frac{1}{2}}}{M}\text{, }V\neq 0\text{ and }A\neq 0\text{ and }Y\neq 0\text{ and }G\neq 0\text{ and }M\neq 0
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
M^{2}EGYE\times 1AV=1
M^{2} मेळोवंक M आनी M गुणचें.
M^{2}E^{2}GY\times 1AV=1
E^{2} मेळोवंक E आनी E गुणचें.
AGVYE^{2}M^{2}=1
संज्ञा परत क्रमान लावची.
GVYE^{2}M^{2}A=1
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{GVYE^{2}M^{2}A}{GVYE^{2}M^{2}}=\frac{1}{GVYE^{2}M^{2}}
दोनुय कुशींक GVYE^{2}M^{2} न भाग लावचो.
A=\frac{1}{GVYE^{2}M^{2}}
GVYE^{2}M^{2} वरवीं भागाकार केल्यार GVYE^{2}M^{2} वरवीं केल्लो गुणाकार काडटा.
A=\frac{1}{GVY\left(EM\right)^{2}}
GVYE^{2}M^{2} न1 क भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}