I_0 खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}I_{0}=-i\sqrt{I_{m}}\left(-\sin(\theta _{0})\right)^{-\frac{1}{2}}\text{; }I_{0}=i\sqrt{I_{m}}\left(-\sin(\theta _{0})\right)^{-\frac{1}{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta _{0}=\pi n_{1}\\I_{0}\in \mathrm{C}\text{, }&I_{m}=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{0}=\pi n_{1}\end{matrix}\right.
I_0 खातीर सोडोवचें
\left\{\begin{matrix}I_{0}=\sqrt{\frac{I_{m}}{\sin(\theta _{0})}}\text{; }I_{0}=-\sqrt{\frac{I_{m}}{\sin(\theta _{0})}}\text{, }&\left(I_{m}\geq 0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(\theta _{0}>2\pi n_{2}\text{ and }\theta _{0}<2\pi n_{2}+\pi \right)\right)\text{ or }\left(I_{m}\leq 0\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\theta _{0}>2\pi n_{3}+\pi \text{ and }\theta _{0}<2\pi n_{3}+2\pi \right)\right)\\I_{0}\in \mathrm{R}\text{, }&I_{m}=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{0}=\pi n_{1}\end{matrix}\right.
I_m खातीर सोडोवचें
I_{m}=I_{0}^{2}\sin(\theta _{0})
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}