x खातीर सोडोवचें
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
ग्राफ
प्रस्नमाची
Polynomial
9 x ^ { 2 } + 30 x + 25 = 0
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
a+b=30 ab=9\times 25=225
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू 9x^{2}+ax+bx+25 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,225 3,75 5,45 9,25 15,15
ab सकारात्मक आसा देखून, a आनी b क एकूच खूण आसा. a+b सकारात्मक आसा देखून, a आनी b दोनूय सकारात्मक आसा. गुणक दिवपी तत्सम जोडयांची सुची 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
दरेक जोडयेखातीर गणीत मेजचें.
a=15 b=15
जोडयेचें उत्तर जें दिता गणीत 30.
\left(9x^{2}+15x\right)+\left(15x+25\right)
9x^{2}+30x+25 हें \left(9x^{2}+15x\right)+\left(15x+25\right) बरोवचें.
3x\left(3x+5\right)+5\left(3x+5\right)
पयल्यात 3xफॅक्टर आवट आनी 5 दुस-या गटात.
\left(3x+5\right)\left(3x+5\right)
फॅक्टर आवट सामान्य शब्द 3x+5 वितरीत गूणधर्म वापरून.
\left(3x+5\right)^{2}
बायनोमियल वर्गात परत बरोवप.
x=-\frac{5}{3}
गणीताचें उपाय सोदूंक, सोडोवचें 3x+5=0.
9x^{2}+30x+25=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-30±\sqrt{30^{2}-4\times 9\times 25}}{2\times 9}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 9, b खातीर 30 आनी c खातीर 25 बदली घेवचे.
x=\frac{-30±\sqrt{900-4\times 9\times 25}}{2\times 9}
30 वर्गमूळ.
x=\frac{-30±\sqrt{900-36\times 25}}{2\times 9}
9क -4 फावटी गुणचें.
x=\frac{-30±\sqrt{900-900}}{2\times 9}
25क -36 फावटी गुणचें.
x=\frac{-30±\sqrt{0}}{2\times 9}
-900 कडेन 900 ची बेरीज करची.
x=-\frac{30}{2\times 9}
0 चें वर्गमूळ घेवचें.
x=-\frac{30}{18}
9क 2 फावटी गुणचें.
x=-\frac{5}{3}
6 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{-30}{18} उणो करचो.
9x^{2}+30x+25=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
9x^{2}+30x+25-25=-25
समिकरणाच्या दोनूय कुशींतल्यान 25 वजा करचें.
9x^{2}+30x=-25
तातूंतल्यानूच 25 वजा केल्यार 0 उरता.
\frac{9x^{2}+30x}{9}=-\frac{25}{9}
दोनुय कुशींक 9 न भाग लावचो.
x^{2}+\frac{30}{9}x=-\frac{25}{9}
9 वरवीं भागाकार केल्यार 9 वरवीं केल्लो गुणाकार काडटा.
x^{2}+\frac{10}{3}x=-\frac{25}{9}
3 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{30}{9} उणो करचो.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(\frac{5}{3}\right)^{2}
\frac{5}{3} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो \frac{10}{3} क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{5}{3} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{-25+25}{9}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{5}{3} क वर्गमूळ लावचें.
x^{2}+\frac{10}{3}x+\frac{25}{9}=0
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{25}{9} क -\frac{25}{9} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
\left(x+\frac{5}{3}\right)^{2}=0
गुणकपद x^{2}+\frac{10}{3}x+\frac{25}{9}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{0}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+\frac{5}{3}=0 x+\frac{5}{3}=0
सोंपें करचें.
x=-\frac{5}{3} x=-\frac{5}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{3} वजा करचें.
x=-\frac{5}{3}
समिकरण आतां सुटावें जालें. समाधानां समान आसात.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}