मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x^{2}+3-4x-9x
3x^{2} मेळोवंक 8x^{2} आनी -5x^{2} एकठांय करचें.
3x^{2}+3-13x
-13x मेळोवंक -4x आनी -9x एकठांय करचें.
factor(3x^{2}+3-4x-9x)
3x^{2} मेळोवंक 8x^{2} आनी -5x^{2} एकठांय करचें.
factor(3x^{2}+3-13x)
-13x मेळोवंक -4x आनी -9x एकठांय करचें.
3x^{2}-13x+3=0
क्वॉड्रेटिक पोलिनोमियल ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) हें ट्रांसफोर्मेशन वापरून फॅक्टर्ड करूंक शकतात, जंय x_{1} आनी x_{2} हीं ax^{2}+bx+c=0.क्वॉड्रेटिक समीकरणाचीं समाधानां आसतात.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\times 3}}{2\times 3}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 3\times 3}}{2\times 3}
-13 वर्गमूळ.
x=\frac{-\left(-13\right)±\sqrt{169-12\times 3}}{2\times 3}
3क -4 फावटी गुणचें.
x=\frac{-\left(-13\right)±\sqrt{169-36}}{2\times 3}
3क -12 फावटी गुणचें.
x=\frac{-\left(-13\right)±\sqrt{133}}{2\times 3}
-36 कडेन 169 ची बेरीज करची.
x=\frac{13±\sqrt{133}}{2\times 3}
-13 च्या विरुध्दार्थी अंक 13 आसा.
x=\frac{13±\sqrt{133}}{6}
3क 2 फावटी गुणचें.
x=\frac{\sqrt{133}+13}{6}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{13±\sqrt{133}}{6} सोडोवचें. \sqrt{133} कडेन 13 ची बेरीज करची.
x=\frac{13-\sqrt{133}}{6}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{13±\sqrt{133}}{6} सोडोवचें. 13 तल्यान \sqrt{133} वजा करची.
3x^{2}-13x+3=3\left(x-\frac{\sqrt{133}+13}{6}\right)\left(x-\frac{13-\sqrt{133}}{6}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ ऍक्सप्रेशनाचे फॅक्टर करचें. x_{1} खातीर \frac{13+\sqrt{133}}{6} आनी x_{2} खातीर \frac{13-\sqrt{133}}{6} बदली करचीं.