मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x-y=5,-4x+5y=7
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x-y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=y+5
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=\frac{1}{4}\left(y+5\right)
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{1}{4}y+\frac{5}{4}
y+5क \frac{1}{4} फावटी गुणचें.
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
-4x+5y=7 ह्या दुस-या समिकरणांत x खातीर \frac{5+y}{4} बदलपी घेवचो.
-y-5+5y=7
\frac{5+y}{4}क -4 फावटी गुणचें.
4y-5=7
5y कडेन -y ची बेरीज करची.
4y=12
समिकरणाच्या दोनूय कुशींतल्यान 5 ची बेरीज करची.
y=3
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{1}{4}\times 3+\frac{5}{4}
x=\frac{1}{4}y+\frac{5}{4} त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{3+5}{4}
3क \frac{1}{4} फावटी गुणचें.
x=2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{3}{4} क \frac{5}{4} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=2,y=3
प्रणाली आतां सुटावी जाली.
4x-y=5,-4x+5y=7
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
अंकगणीत करचें.
x=2,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x-y=5,-4x+5y=7
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
4x आनी -4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
-16x+4y=-20,-16x+20y=28
सोंपें करचें.
-16x+16x+4y-20y=-20-28
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -16x+4y=-20 तल्यान -16x+20y=28 वजा करचो.
4y-20y=-20-28
16x कडेन -16x ची बेरीज करची. अटी -16x आनी 16x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-16y=-20-28
-20y कडेन 4y ची बेरीज करची.
-16y=-48
-28 कडेन -20 ची बेरीज करची.
y=3
दोनुय कुशींक -16 न भाग लावचो.
-4x+5\times 3=7
-4x+5y=7 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-4x+15=7
3क 5 फावटी गुणचें.
-4x=-8
समिकरणाच्या दोनूय कुशींतल्यान 15 वजा करचें.
x=2
दोनुय कुशींक -4 न भाग लावचो.
x=2,y=3
प्रणाली आतां सुटावी जाली.