मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x-5y=-14,7x+y=-5
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x-5y=-14
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=5y-14
समिकरणाच्या दोनूय कुशींतल्यान 5y ची बेरीज करची.
x=\frac{1}{4}\left(5y-14\right)
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{5}{4}y-\frac{7}{2}
5y-14क \frac{1}{4} फावटी गुणचें.
7\left(\frac{5}{4}y-\frac{7}{2}\right)+y=-5
7x+y=-5 ह्या दुस-या समिकरणांत x खातीर \frac{5y}{4}-\frac{7}{2} बदलपी घेवचो.
\frac{35}{4}y-\frac{49}{2}+y=-5
\frac{5y}{4}-\frac{7}{2}क 7 फावटी गुणचें.
\frac{39}{4}y-\frac{49}{2}=-5
y कडेन \frac{35y}{4} ची बेरीज करची.
\frac{39}{4}y=\frac{39}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{49}{2} ची बेरीज करची.
y=2
\frac{39}{4} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{5}{4}\times 2-\frac{7}{2}
x=\frac{5}{4}y-\frac{7}{2} त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{5-7}{2}
2क \frac{5}{4} फावटी गुणचें.
x=-1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{5}{2} क -\frac{7}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-1,y=2
प्रणाली आतां सुटावी जाली.
4x-5y=-14,7x+y=-5
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-5\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 7\right)}&-\frac{-5}{4-\left(-5\times 7\right)}\\-\frac{7}{4-\left(-5\times 7\right)}&\frac{4}{4-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}&\frac{5}{39}\\-\frac{7}{39}&\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}\left(-14\right)+\frac{5}{39}\left(-5\right)\\-\frac{7}{39}\left(-14\right)+\frac{4}{39}\left(-5\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
अंकगणीत करचें.
x=-1,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x-5y=-14,7x+y=-5
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
7\times 4x+7\left(-5\right)y=7\left(-14\right),4\times 7x+4y=4\left(-5\right)
4x आनी 7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
28x-35y=-98,28x+4y=-20
सोंपें करचें.
28x-28x-35y-4y=-98+20
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 28x-35y=-98 तल्यान 28x+4y=-20 वजा करचो.
-35y-4y=-98+20
-28x कडेन 28x ची बेरीज करची. अटी 28x आनी -28x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-39y=-98+20
-4y कडेन -35y ची बेरीज करची.
-39y=-78
20 कडेन -98 ची बेरीज करची.
y=2
दोनुय कुशींक -39 न भाग लावचो.
7x+2=-5
7x+y=-5 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
7x=-7
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=-1
दोनुय कुशींक 7 न भाग लावचो.
x=-1,y=2
प्रणाली आतां सुटावी जाली.