मुखेल आशय वगडाय
x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3\left(x^{2}+10x+25\right)-7\left(x+5\right)-40=0
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+5\right)^{2}.
3x^{2}+30x+75-7\left(x+5\right)-40=0
x^{2}+10x+25 न 3 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+30x+75-7x-35-40=0
x+5 न -7 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+23x+75-35-40=0
23x मेळोवंक 30x आनी -7x एकठांय करचें.
3x^{2}+23x+40-40=0
40 मेळोवंक 75 आनी 35 वजा करचे.
3x^{2}+23x=0
0 मेळोवंक 40 आनी 40 वजा करचे.
x\left(3x+23\right)=0
x गुणकपद काडचें.
x=0 x=-\frac{23}{3}
गणीताचें उत्तर सोदूंक, सोडोवचें x=0 आनी 3x+23=0.
3\left(x^{2}+10x+25\right)-7\left(x+5\right)-40=0
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+5\right)^{2}.
3x^{2}+30x+75-7\left(x+5\right)-40=0
x^{2}+10x+25 न 3 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+30x+75-7x-35-40=0
x+5 न -7 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+23x+75-35-40=0
23x मेळोवंक 30x आनी -7x एकठांय करचें.
3x^{2}+23x+40-40=0
40 मेळोवंक 75 आनी 35 वजा करचे.
3x^{2}+23x=0
0 मेळोवंक 40 आनी 40 वजा करचे.
x=\frac{-23±\sqrt{23^{2}}}{2\times 3}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 3, b खातीर 23 आनी c खातीर 0 बदली घेवचे.
x=\frac{-23±23}{2\times 3}
23^{2} चें वर्गमूळ घेवचें.
x=\frac{-23±23}{6}
3क 2 फावटी गुणचें.
x=\frac{0}{6}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-23±23}{6} सोडोवचें. 23 कडेन -23 ची बेरीज करची.
x=0
6 न0 क भाग लावचो.
x=-\frac{46}{6}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-23±23}{6} सोडोवचें. -23 तल्यान 23 वजा करची.
x=-\frac{23}{3}
2 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{-46}{6} उणो करचो.
x=0 x=-\frac{23}{3}
समिकरण आतां सुटावें जालें.
3\left(x^{2}+10x+25\right)-7\left(x+5\right)-40=0
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+5\right)^{2}.
3x^{2}+30x+75-7\left(x+5\right)-40=0
x^{2}+10x+25 न 3 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+30x+75-7x-35-40=0
x+5 न -7 गुणपाक विभाजक विशमाचो वापर करचो.
3x^{2}+23x+75-35-40=0
23x मेळोवंक 30x आनी -7x एकठांय करचें.
3x^{2}+23x+40-40=0
40 मेळोवंक 75 आनी 35 वजा करचे.
3x^{2}+23x=0
0 मेळोवंक 40 आनी 40 वजा करचे.
\frac{3x^{2}+23x}{3}=\frac{0}{3}
दोनुय कुशींक 3 न भाग लावचो.
x^{2}+\frac{23}{3}x=\frac{0}{3}
3 वरवीं भागाकार केल्यार 3 वरवीं केल्लो गुणाकार काडटा.
x^{2}+\frac{23}{3}x=0
3 न0 क भाग लावचो.
x^{2}+\frac{23}{3}x+\left(\frac{23}{6}\right)^{2}=\left(\frac{23}{6}\right)^{2}
\frac{23}{6} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो \frac{23}{3} क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी \frac{23}{6} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{529}{36}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन \frac{23}{6} क वर्गमूळ लावचें.
\left(x+\frac{23}{6}\right)^{2}=\frac{529}{36}
गुणकपद x^{2}+\frac{23}{3}x+\frac{529}{36}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x+\frac{23}{6}\right)^{2}}=\sqrt{\frac{529}{36}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x+\frac{23}{6}=\frac{23}{6} x+\frac{23}{6}=-\frac{23}{6}
सोंपें करचें.
x=0 x=-\frac{23}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{23}{6} वजा करचें.