x खातीर सोडोवचें (जटील सोल्यूशन)
x=\frac{1+\sqrt{23}i}{2}\approx 0.5+2.397915762i
x=\frac{-\sqrt{23}i+1}{2}\approx 0.5-2.397915762i
ग्राफ
प्रस्नमाची
Quadratic Equation
2x-2 { x }^{ 2 } = 12
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-2x^{2}+2x=12
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
-2x^{2}+2x-12=12-12
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
-2x^{2}+2x-12=0
तातूंतल्यानूच 12 वजा केल्यार 0 उरता.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर -2, b खातीर 2 आनी c खातीर -12 बदली घेवचे.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
2 वर्गमूळ.
x=\frac{-2±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
-2क -4 फावटी गुणचें.
x=\frac{-2±\sqrt{4-96}}{2\left(-2\right)}
-12क 8 फावटी गुणचें.
x=\frac{-2±\sqrt{-92}}{2\left(-2\right)}
-96 कडेन 4 ची बेरीज करची.
x=\frac{-2±2\sqrt{23}i}{2\left(-2\right)}
-92 चें वर्गमूळ घेवचें.
x=\frac{-2±2\sqrt{23}i}{-4}
-2क 2 फावटी गुणचें.
x=\frac{-2+2\sqrt{23}i}{-4}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{-2±2\sqrt{23}i}{-4} सोडोवचें. 2i\sqrt{23} कडेन -2 ची बेरीज करची.
x=\frac{-\sqrt{23}i+1}{2}
-4 न-2+2i\sqrt{23} क भाग लावचो.
x=\frac{-2\sqrt{23}i-2}{-4}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{-2±2\sqrt{23}i}{-4} सोडोवचें. -2 तल्यान 2i\sqrt{23} वजा करची.
x=\frac{1+\sqrt{23}i}{2}
-4 न-2-2i\sqrt{23} क भाग लावचो.
x=\frac{-\sqrt{23}i+1}{2} x=\frac{1+\sqrt{23}i}{2}
समिकरण आतां सुटावें जालें.
-2x^{2}+2x=12
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
\frac{-2x^{2}+2x}{-2}=\frac{12}{-2}
दोनुय कुशींक -2 न भाग लावचो.
x^{2}+\frac{2}{-2}x=\frac{12}{-2}
-2 वरवीं भागाकार केल्यार -2 वरवीं केल्लो गुणाकार काडटा.
x^{2}-x=\frac{12}{-2}
-2 न2 क भाग लावचो.
x^{2}-x=-6
-2 न12 क भाग लावचो.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -1 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{1}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-x+\frac{1}{4}=-6+\frac{1}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{1}{2} क वर्गमूळ लावचें.
x^{2}-x+\frac{1}{4}=-\frac{23}{4}
\frac{1}{4} कडेन -6 ची बेरीज करची.
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{4}
गुणकपद x^{2}-x+\frac{1}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{1}{2}=\frac{\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
सोंपें करचें.
x=\frac{1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+1}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{1}{2} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}