गुणकपद
4\left(3x-4\right)\left(2x+1\right)
मूल्यांकन करचें
24x^{2}-20x-16
ग्राफ
प्रस्नमाची
Polynomial
24 x ^ { 2 } - 20 x - 16
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
4\left(6x^{2}-5x-4\right)
4 गुणकपद काडचें.
a+b=-5 ab=6\left(-4\right)=-24
विचारांत घेयात 6x^{2}-5x-4. गट करून गणीत फॅक्टर करचो. पयली, गणीत 6x^{2}+ax+bx-4 म्हूण परत बरोवपाची गरज आसता. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-24 2,-12 3,-8 4,-6
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
दरेक जोडयेखातीर गणीत मेजचें.
a=-8 b=3
जोडयेचें उत्तर जें दिता गणीत -5.
\left(6x^{2}-8x\right)+\left(3x-4\right)
6x^{2}-5x-4 हें \left(6x^{2}-8x\right)+\left(3x-4\right) बरोवचें.
2x\left(3x-4\right)+3x-4
फॅक्टर आवट 2x त 6x^{2}-8x.
\left(3x-4\right)\left(2x+1\right)
फॅक्टर आवट सामान्य शब्द 3x-4 वितरीत गूणधर्म वापरून.
4\left(3x-4\right)\left(2x+1\right)
पुराय फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
24x^{2}-20x-16=0
क्वॉड्रेटिक पोलिनोमियल ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) हें ट्रांसफोर्मेशन वापरून फॅक्टर्ड करूंक शकतात, जंय x_{1} आनी x_{2} हीं ax^{2}+bx+c=0.क्वॉड्रेटिक समीकरणाचीं समाधानां आसतात.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 24\left(-16\right)}}{2\times 24}
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 24\left(-16\right)}}{2\times 24}
-20 वर्गमूळ.
x=\frac{-\left(-20\right)±\sqrt{400-96\left(-16\right)}}{2\times 24}
24क -4 फावटी गुणचें.
x=\frac{-\left(-20\right)±\sqrt{400+1536}}{2\times 24}
-16क -96 फावटी गुणचें.
x=\frac{-\left(-20\right)±\sqrt{1936}}{2\times 24}
1536 कडेन 400 ची बेरीज करची.
x=\frac{-\left(-20\right)±44}{2\times 24}
1936 चें वर्गमूळ घेवचें.
x=\frac{20±44}{2\times 24}
-20 च्या विरुध्दार्थी अंक 20 आसा.
x=\frac{20±44}{48}
24क 2 फावटी गुणचें.
x=\frac{64}{48}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{20±44}{48} सोडोवचें. 44 कडेन 20 ची बेरीज करची.
x=\frac{4}{3}
16 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{64}{48} उणो करचो.
x=-\frac{24}{48}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{20±44}{48} सोडोवचें. 20 तल्यान 44 वजा करची.
x=-\frac{1}{2}
24 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{-24}{48} उणो करचो.
24x^{2}-20x-16=24\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ ऍक्सप्रेशनाचे फॅक्टर करचें. x_{1} खातीर \frac{4}{3} आनी x_{2} खातीर -\frac{1}{2} बदली करचीं.
24x^{2}-20x-16=24\left(x-\frac{4}{3}\right)\left(x+\frac{1}{2}\right)
p-\left(-q\right) नमुन्याची सगलीं ऍक्सप्रेशनां p+q कडेन सोंपीं करचीं.
24x^{2}-20x-16=24\times \frac{3x-4}{3}\left(x+\frac{1}{2}\right)
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{4}{3} तल्यान x वजा करचो. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
24x^{2}-20x-16=24\times \frac{3x-4}{3}\times \frac{2x+1}{2}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून x क \frac{1}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
24x^{2}-20x-16=24\times \frac{\left(3x-4\right)\left(2x+1\right)}{3\times 2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{2x+1}{2} क \frac{3x-4}{3} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
24x^{2}-20x-16=24\times \frac{\left(3x-4\right)\left(2x+1\right)}{6}
2क 3 फावटी गुणचें.
24x^{2}-20x-16=4\left(3x-4\right)\left(2x+1\right)
24 आनी 6 त 6 हो सगल्यांत व्हडलो सामान्य घटक रद्द करचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}