मूल्यांकन करचें
-\frac{5}{12}+\frac{6}{n}
गुणकपद
-\frac{\frac{1}{12}\left(5n-72\right)}{n}
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{20}{12}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
\frac{20}{12} मेळोवंक 20 आनी \frac{1}{12} गुणचें.
\frac{5}{3}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
4 भायर काडून आनी रद्द करून एकदम उण्या संज्ञेत अपुर्णांक \frac{20}{12} उणो करचो.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-5\times \frac{5}{12}
एकोडो अपूर्णांक म्हूण 2\times \frac{4}{n} स्पश्ट करचें.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-5\times 5}{12}
एकोडो अपूर्णांक म्हूण -5\times \frac{5}{12} स्पश्ट करचें.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-25}{12}
-25 मेळोवंक -5 आनी 5 गुणचें.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
नकारात्मक चिन्न वगळावंन अपुर्णांक \frac{-25}{12} हो -\frac{25}{12} भशेन परत बरोवंक शकतात.
\frac{20}{12}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
3 आनी 12 चो किमान सामान्य गुणाकार आसा 12. 12 डिनोमिनेशना सयत \frac{5}{3} आनी \frac{25}{12} अपूर्णांकांत रुपांतरीत करचे.
\frac{20-25}{12}+\frac{2\times 4}{n}-\frac{2}{n}
\frac{20}{12} आनी \frac{25}{12} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
-\frac{5}{12}+\frac{2\times 4}{n}-\frac{2}{n}
-5 मेळोवंक 20 आनी 25 वजा करचे.
-\frac{5n}{12n}+\frac{12\times 2\times 4}{12n}-\frac{2}{n}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 12 आनी n चो किमान सामान्य गुणाकार आसा 12n. \frac{n}{n}क -\frac{5}{12} फावटी गुणचें. \frac{12}{12}क \frac{2\times 4}{n} फावटी गुणचें.
\frac{-5n+12\times 2\times 4}{12n}-\frac{2}{n}
-\frac{5n}{12n} आनी \frac{12\times 2\times 4}{12n} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर जो़डून तांची बेरीज करची.
\frac{-5n+96}{12n}-\frac{2}{n}
-5n+12\times 2\times 4 त गुणाकार करचे.
\frac{-5n+96}{12n}-\frac{2\times 12}{12n}
ऍक्सप्रेशन जमा करूंक वा वजा करूंक, तांचे डिनोमिनेटर तसोच दवरूंक विस्तारावचें. 12n आनी n चो किमान सामान्य गुणाकार आसा 12n. \frac{12}{12}क \frac{2}{n} फावटी गुणचें.
\frac{-5n+96-2\times 12}{12n}
\frac{-5n+96}{12n} आनी \frac{2\times 12}{12n} चे समान डिनोमिनेटर आशिल्ल्यान, तांचे न्युमरेटर वजा करून तांची वजाबाकी करची.
\frac{-5n+96-24}{12n}
-5n+96-2\times 12 त गुणाकार करचे.
\frac{-5n+72}{12n}
-5n+96-24 त समान शब्द एकठांय करचे.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}