V खातीर सोडोवचें
V=\frac{188R_{1}v}{161\left(R_{1}+21\Omega \right)}
R_{1}\neq -21\Omega
R_1 खातीर सोडोवचें
\left\{\begin{matrix}R_{1}=\frac{3381V\Omega }{188v-161V}\text{, }&\Omega \neq 0\text{ and }v\neq 0\text{ and }V\neq \frac{188v}{161}\\R_{1}\neq 0\text{, }&\Omega =0\text{ and }v=\frac{161V}{188}\text{ and }V\neq 0\\R_{1}\neq -21\Omega \text{, }&V=0\text{ and }v=0\end{matrix}\right.
प्रस्नमाची
Algebra
कडेन 5 समस्या समान:
161 V = 188 v \cdot \frac { R _ { 1 } } { R _ { 1 } + 21 \Omega }
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
161V\left(R_{1}+21\Omega \right)=188vR_{1}
R_{1}+21\Omega वरवीं समिकरणाच्या दोनूय कुशींक गुणाकार करचो.
161VR_{1}+3381\Omega V=188vR_{1}
R_{1}+21\Omega न 161V गुणपाक विभाजक विशमाचो वापर करचो.
\left(161R_{1}+3381\Omega \right)V=188vR_{1}
V आसपी सगळ्यो संज्ञा एकठांय करच्यो.
\left(161R_{1}+3381\Omega \right)V=188R_{1}v
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{\left(161R_{1}+3381\Omega \right)V}{161R_{1}+3381\Omega }=\frac{188R_{1}v}{161R_{1}+3381\Omega }
दोनुय कुशींक 161R_{1}+3381\Omega न भाग लावचो.
V=\frac{188R_{1}v}{161R_{1}+3381\Omega }
161R_{1}+3381\Omega वरवीं भागाकार केल्यार 161R_{1}+3381\Omega वरवीं केल्लो गुणाकार काडटा.
V=\frac{188R_{1}v}{161\left(R_{1}+21\Omega \right)}
161R_{1}+3381\Omega न188vR_{1} क भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}